Physical and Mechanical Properties and Biological Resistance of the Calcareous Composites on Activated Mixing Water

2020 ◽  
Vol 1011 ◽  
pp. 151-157
Author(s):  
Sergey Khutorskoy ◽  
Denis Emelyanov ◽  
Alexander Matvievsky ◽  
Vasiliy Smirnov

The study results of the calcareous composites made with the use of activated mixing water are presented. Quicklime and slaked lime are used as lime binders. The mixing water was activated by the electric current and magnetic field in various modes. The effect of water activation on the physical and mechanical properties of slaked and quicklime composites and the resistance to the effects of the biological environment are studied. The water for mixing electromagnetic treatment effectiveness analysis is presented. The increase in the density of materials based on lime, trapped in activated water using ultrasound tests is proven. It was found that the mixing water activation affects the structure formation of composites and, under certain activation conditions, leads to an increase in such physical and mechanical parameters as strength and hardness. The positive effect of the mixing water activation on the lime-based materials’ resistance to microbial growth has been established, and the decrease in the growth of composites based on quicklime and slaked lime has been proved.

Author(s):  
V. I. Khirkhasova ◽  

The paper deals with modification of cement composite and concrete with nanocellulose in low and high density. The author presents the study results of the influence of nanocellulose on the cement composite hardening process, as well as the physical and mechanical properties of heavy concrete. The influence of the used additive on the rheological and strength characteristics of concrete is revealed. A new method is proposed to improve the material performance.


FLORESTA ◽  
2005 ◽  
Vol 35 (1) ◽  
Author(s):  
Teresa María Suirezs

Este trabajo tuvo por objetivo, estudiar el comportamiento de las propiedades físicas y mecánicas de la madera de Pinus taeda L. impregnada por vacío-presión con preservador CCA (CrO3; CuO; As2O5) con tres retenciones, 5, 10 y 15 kg/m3. El proceso de impregnado se realizó, por el método Burnett, aplicándose presión y vacío de 7 kg/m2 y – 0,5 kg/m2 respectivamente. Los ensayos de las propiedades físicas y mecánicas se determinaron según lo establecen, las Normas técnicas IRAM (Instituto Argentino de Racionalización de Materiales), ASTM (American Society for Testing and Materials) y DIN (Deutsche Industrie Norm). Las propiedades físicas como ser los pesos específicos aparentes no son afectadas por las retenciones de CCA en la madera. Las contracciones tanto en el sentido tangencial como radial en las maderas impregnadas son menores. Las propiedades mecánicas de resistencia a la flexión estática, compresión paralela a las fibras, tracción perpendicular a las fibras, disminuyen levemente sus valores promedios con respecto a la madera sin impregnar, pero estas diferencias no son estadísticamente significativas, para 95 % de confianza. La impregnación ha producido un efecto positivo en la dureza Janka transversal y en el corte paralelo a las fibras tangencial siendo estas diferencias estadísticamente significativas. Behaviour of the wood of Pinus taeda impregnated with Chrome, Copper, Arsenic (CCA) Abstract The physical and mechanical properties of the wood of Pinus taeda L. without impregnating and impregnating by empty - pressure with preserving CCA (Chrome, Copper, Arsenic) with three retentions, 5, 10 and 15 kg/m3 have been determined and analysed. The impregnation was accomplished in an autoclave applying the Burnett method. The physical and mechanical properties were determined according to the following technical Procedures; IRAM (Argentine Institute for Rationalization of materials), ASTM (American Society for Testing and Material) and DIN (Deutsche Industrie Norm). The results indicate that the specific weights of samples containing different percentages of humidity was not affected by the retentions of CCA in the wood. The shrinkage both in the tangential and radial directions in the impregnated samples were smaller in the impregnated sample. The mechanical resistance to statics flexion, compression parallel to the fibers, traction perpendicular to the fibers, hardness tangential and radial Janka and paralell radial cut, do not show statistically meaningful differences between impregnated and not impregnated samples; however the treatment has produced a positive effect in the hardness transverse Janka and in the parallel cut to the tangential fibers.


2016 ◽  
Vol 843 ◽  
pp. 103-110
Author(s):  
Yuri Kulikov

In the heart of the processes of formation of physical and mechanical properties of secondary lining of underground structures is the residual water-cement ratio, which indicates the extraction of the mixing water of the concrete mixture under the action of external pressure forces. This article examines the nature of the redistribution of the mixing water in the concrete lining of the tunnels. Under the influence of radial and axial forces from laid concrete mix there is an increase in water-cement ratio in the direction from the sole to the vault head of the tunnel. This leads to deterioration of physical and mechanical properties of the lining in the roof part of the tunnel. When calculating the strength and water resistance of the secondary concrete tunnel lining the characteristics of the concrete type by strength and waterproof, adjusted by the weakest part of the lining – its roof part – should be taken into account. The analysis of influence on the technology of erection of the lining is given.


Author(s):  
Ishaya Musa Dagwa ◽  
O. Ojo

In Recent Times, Environmental Concerns Arising from Pollution, Global Warming and Waste Management Have Led to the Generation of Interest in the Use of Environmentally Friendly Materials, Especially, Biological Materials such as Natural Fibres and Particulates in Composite Materials Manufacture. in this Work, Natural Fillers (Afara-Mahogany Particulates of 150µm) and Fibre (Caesar Weed Fibre of 5mm Length) Were Mixed with Epoxy Resin at the Various Fibre/filler Weight Percentages as Follows: 2%, 4%, 6%, 8% and 10% with Random Fibre Orientations. some Physical and Mechanical Properties of the Composite Were Determined Using Standard Procedures. Ninety (90) Wt% of Epoxy Resin Mixed with 10 Wt% for each of the Following: Caeser Weed Fibre, Afara and Mahogany, Improved the Tensile Modulus by 2652.6%, 321.37%, and 129.73% and the Impact Strength by 162.7%, 133.9% and 15.25%, Respectively. Also, Composites Density Reduced by 26.26%, 3.03%, and 3.03%, and its Hardness too Reduced by 5.41%, 1.35%, and 4.05%, Respectively. Meanwhile, the Water Absorption Were 4.9%, 2.79%, and 4.12% for 10wt% of Caeser Weed Fibre, Afara and Mahogany, Respectively and 90wt% Epoxy Resin. Therefore, Caeser Weed Fibre Had the Greatest Positive Effect on the Tensile Strength, Impact Energy Absorbed and Density. however, Afara-Epoxy Composite Had the Least Water Absorption and Higher Shore Hardness Value than Mahogany-Epoxy and Caeser Weed Fibre-Epoxy Composites.


2021 ◽  
Vol 39 (1A) ◽  
pp. 104-115
Author(s):  
Alaa Z. Dahesh ◽  
Farhad M. Othman ◽  
Alaa A. Abdul-hamead

Because cracks are the main problem of mass concrete, this paper investigates an experimental study on the effect of polypropylene microfiber (PPMFs) on self -repair behavior of mass concrete, through study the microstructure, workability, physical, and mechanical properties of mass concrete. PPMFs with a diameter of 18 µm add in different percentages (0, 0.5, 1 and 1.5) % of cement weight. Where the prepared mixture ratio was (1:2:4.8) and the water-cement ratio (W/C) was 0.4. Also, 0.6% of Superplasticizer (SP) % of cement weight to all concrete mixtures was added. In this study, an SEM analysis used to observe the effect of PPMFs on the microstructure of mass concrete, and compressive and flexural strength tests for study the mechanical properties of this. And referring to the analysis and discussion of the results, PPMFs used have changed the microstructure of mass concrete, and have an effective effect on improving compressive strength and flexural strength, and mechanism of sealing the cracks of concrete autogenously. Also, 1% PPMFs (% of cement weight) recorded as the highest addition, which has a positive effect on mass concrete properties to apply it in the construction field.


Author(s):  
Роман Шорстов ◽  
Roman Shorstov

The article discusses the possibility of regulation by changing the amount of aluminum paste, the temperature of the mixing water and the sides of mold for the expansion of molding sand of autoclaved aerated concrete. Also, the achievement of a given maximum temperature of the array, which determines the nature of the pore structure and physico-mechanical properties of products. Mathematical models for optimizing the physicomechanical properties of autoclaved aerated concrete by regulating technological and prescription parameters are obtained using the method of mathematical planning of an experiment. It is established, optimal parameters are the mixing water temperature of 40 ... 45 ° C, the amount of aluminum paste - 0.6% of the binder mass, the temperature of the sides of the form 85 ... 90 ° C, which creates favorable conditions for the expansion of the gas-concrete mixture and the combination of pore formation and set-up structural strength of the array, allowing to obtain an optimal porous structure with smaller and uniform porosity with a sufficiently low density and high strength


2011 ◽  
Vol 110-116 ◽  
pp. 596-599
Author(s):  
Hossein Khanjanzadeh ◽  
Taghi Tabarsa

In this study the effect of nanoclay (0, 3 and 5 wt %) and grafted anhydride maleic with polypropylene (MAPP, 3 and 5 wt%) on physical and mechanical properties of polypropylene/wood flour nanocomposite was investigated. For manufacturing of these composites after melt compounding of the material they were converted to wood plastic granules in extruder and placed in hot press. The results showed that with increase of nanoclay physical (thickness swilling and water absorption) properties increases significantly but mechanical (bending and module of elasticity) properties increase up to 3 percent but after that gradually decreases. Also with incorporation of MAPP physical and mechanical properties of this nanocomposites improved and this positive effect was stronger for 5 percent MAPP than 3 one.


Author(s):  
Bintoro Siswo Nugroho ◽  
Yoga Pebrianto ◽  
Irfana Diah Faryuni ◽  
Asifa Asri

This study examines the effect of nanosilica addition to the physical and mechanical properties of sugar palm fibers (SPFs) reinforced cement composite concrete. The composite concrete ingredients are SPFs as the filler, cement and nano-silica as the matrix, CaCl2 as the catalyst, and water. Testing and fabrication of the composite concrete were performed according to the standard of ASTM C 1185 and ASTM C 1186. The results obtained show that, in general, the addition of nanosilica improves the quality of the composite concrete. A positive effect is attained by adding nanosilica to its optimum amount. The excessive addition of nanosilica reduces the quality of the composite. The composite's mechanical property that is negatively affected by the addition of the nanosilica is the elasticity, in which more nanosilica added stiffer the composite.


Cerâmica ◽  
2010 ◽  
Vol 56 (340) ◽  
pp. 411-421 ◽  
Author(s):  
E. A. Firoozjaei ◽  
A. Saidi ◽  
A. Monshi ◽  
P. Koshy

The bonding system in low cement castables is achieved by the use of calcium aluminate cement, microsilica and reactive alumina. The lime/silica ratio critically impacts the liquid phase formation at high temperatures and subsequently the corrosion resistance and the mechanical and physical properties of the refractory. In the current study, the effects of microsilica and cement contents on the corrosion resistance and the physical and mechanical properties of Andalusite Low Cement Castables (LCCs) refractories were investigated. Alcoa Cup test was used to evaluate the corrosion resistance of the castables at 850 ºC and 1160 ºC. The study showed that an increase in the microsilica/cement ratio improves the physical and mechanical properties of the castable, but at the expense of the corrosion resistance. When a fixed amount of BaSO4 was added to the base refractory material, barium celsian along with glassy phase formation was observed to increase with the increase in the microsilica/cement ratio in the refractory. The presence of the glassy phases was noted to lower the positive effect of Ba-celsian formation on improving the corrosion resistance of the refractory. The observed results were validated using thermodynamic calculations which indicated that Ba-celsian phase was more resistant than Ca-anorthite for applications involving contact with molten aluminum.


2021 ◽  
Vol 1040 ◽  
pp. 159-164
Author(s):  
Valeria V. Strokova ◽  
Viktoriya V. Nelyubova ◽  
Ulyana N. Duhanina ◽  
Dmitriy A. Balitsky ◽  
Oleg I. Drozdov

The paper presents the results of the assessment of the effect of bacterial microorganism Sporosarcinapasteurii and CaCl2 and CH4N2O precursors as agents initiating carbonate mineralization processes on the construction and technical properties of binders. In order to achieve this, a preliminary bacterial solution with precursors was prepared, which was introduced into the system instead of mixing water in the range of 0–10% with interval of 2%. The effect of the bacterial solution as a complex additive on the physical and mechanical properties of cement paste and stone is shown: normal density, setting time, water segragation, strength in compression and bending. The introduction of the solution provides a reduction in the setting time of cement without loss of strength both at the initial and at the final stages of hardening.


Sign in / Sign up

Export Citation Format

Share Document