In Situ Observation during Copper Alloy Brazing Using an X-Ray System

2021 ◽  
Vol 1016 ◽  
pp. 911-916
Author(s):  
Hirokazu Miura ◽  
Hiroki Okada ◽  
Yasuyuki Miyazawa ◽  
Fumio Kanasaki

In general, a flux is used to braze a copper alloy. In many cases, when the molten brazing filler metal spreads in the set joint gap, vaporised flux and its residue are produced, and defects (mainly voids) are formed. Voids, which are formed on the brazed layer, cause deterioration in the strength and other properties. However, with conventional evaluation methods (e.g. ultrasonic or X-ray radiography tests), the behaviour of the molten brazing filler metal during the brazing process cannot be visually observed from the outside of the joint. Therefore, the void formation process cannot be clarified. To improve the quality of the brazed layer, it is necessary to elucidate the mechanism of void formation. The purpose of this study is to observe the behaviour of the molten brazing filler metal by performing an X-ray radiography test at the same time as brazing and to study how to reduce voids. In this study, a brass specimen was brazed with a Cu–P-based brazing filler metal. The specimen was brazed by heating in an electric furnace, and the specimen was irradiated with X-rays. The state where the molten brazing filler metal spread into the gap was photographed as the transmission image. Thereafter, the behaviour of the molten brazing filler metal was analysed.

2014 ◽  
Vol 70 (a1) ◽  
pp. C94-C94
Author(s):  
Pawel Kuczera ◽  
Walter Steurer

The structure of d(ecagonal)-Al-Cu-Rh has been studied as a function of temperature by in-situ single-crystal X-ray diffraction in order to contribute to the discussion on energy or entropy stabilization of quasicrystals (QC) [1]. The experiments were performed at 293 K, 1223 K, 1153 K, 1083 K, and 1013 K. A common subset of 1460 unique reflections was used for the comparative structure refinements at each temperature. The results obtained for the HT structure refinements of d-Al-Cu-Rh QC seem to contradict a pure phasonic-entropy-based stabilization mechanism [2] for this QC. The trends observed for the ln func(I(T1 )/I(T2 )) vs.|k⊥ |^2 plots indicate that the best on-average quasiperiodic order exists between 1083 K and 1153 K, however, what that actually means is unclear. It could indicate towards a small phasonic contribution to entropy, but such contribution is not seen in the structure refinements. A rough estimation of the hypothetic phason instability temperature shows that it would be kinetically inaccessible and thus the phase transition to a 12 Å low T structure (at ~800 K) is most likely not phason-driven. Except for the obvious increase in the amplitude of the thermal motion, no other significant structural changes, in particular no sources of additional phason-related configurational entropy, were found. All structures are refined to very similar R-values, which proves that the quality of the refinement at each temperature is the same. This suggests, that concerning the stability factors, some QCs could be similar to other HT complex intermetallic phases. The experimental results clearly show that at least the ~4 Å structure of d-Al-Cu-Rh is a HT phase therefore entropy plays an important role in its stabilisation mechanism lowering the free energy. However, the main source of this entropy is probably not related to phason flips, but rather to lattice vibrations, occupational disorder unrelated to phason flips like split positions along the periodic axis.


2013 ◽  
Vol 712-715 ◽  
pp. 293-297
Author(s):  
Li Li

Pt/Bi3.15Nd0.85Ti3O12(BNT)/Pt ferroelectric capacitors were monitored using in situ X-ray irradiation with 10 keV at BL14B1 beamline (Shanghai Synchrotron Radiation Facility). BL14B1 combined with a ferroelectric analyzer enabled measurements in situ of electrical performance. The hysteresis curve (PE) of distortion depended on the polarization during irradiation, but the diffracted intensities of the (117) peak did not change in the beginning. ThePEcurve had a negligible change from 2.09×109Gy to 4.45×109Gy. Finally, bothPrandPr+very rapidly increased, but the intensities of (117) decreased. The hysteresis loops were remarkably deformed at the maximum total dose of 4.87×109Gy.


2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


Author(s):  
Weinong W. Chen ◽  
Matthew C. Hudspeth ◽  
Ben Claus ◽  
Niranjan D. Parab ◽  
John T. Black ◽  
...  

Split Hopkinson or Kolsky bars are common high-rate characterization tools for dynamic mechanical behaviour of materials. Stress–strain responses averaged over specimen volume are obtained as a function of strain rate. Specimen deformation histories can be monitored by high-speed imaging on the surface. It has not been possible to track the damage initiation and evolution during the dynamic deformation inside specimens except for a few transparent materials. In this study, we integrated Hopkinson compression/tension bars with high-speed X-ray imaging capabilities. The damage history in a dynamically deforming specimen was monitored in situ using synchrotron radiation via X-ray phase contrast imaging. The effectiveness of the novel union between these two powerful techniques, which opens a new angle for data acquisition in dynamic experiments, is demonstrated by a series of dynamic experiments on a variety of material systems, including particle interaction in granular materials, glass impact cracking, single crystal silicon tensile failure and ligament–bone junction damage.


2022 ◽  
Vol 64 (3) ◽  
pp. 326
Author(s):  
С.А. Кукушкин ◽  
А.В. Осипов ◽  
Е.В. Осипова ◽  
В.М. Стожаров

X-ray diffraction and total external reflection of X-rays (X-ray reflectometry) methods were used to study the successive stages of synthesis of epitaxial SiC films on Si (100) X-ray diffraction and total external X-ray reflection (XRD) methods were used to study successive stages of synthesis of epitaxial SiC films on Si (100) surfaces, (110) and (111) surfaces by the atom substitution method. The data on the transformation evolution of (100) surfaces were studied, (110) and (111) Si, into SiC surfaces. A comparative analysis of the X-ray structural quality of the SiC layers grown on Si by the atom substitution method with the quality of SiC layers grown by Advanced Epi by the standard CVD method. A modified technique for the total outer X-ray reflection method, based on measurements of the intensity of the reflected X-rays using a special parabolic mirror. It is shown that the method of total external reflection method makes it possible to obtain important information about the degree of surface roughness of SiC layers, the evolution of their crystal structure and plasmon energy in the process of Si to SiC conversion.


Author(s):  
Nguyễn An Sơn ◽  
Hai Van Cao ◽  
Trieu Ngoc Le ◽  
Giang Van Nguyen ◽  
Ha Thi Nguyet Nguyen ◽  
...  

Potato is one of popular agricultural products grown and used in the world with high effective economic and nutritional value. In potatoes, there are always have some harmful bacteria species due to the sources of exposure from the seed, soil as well as the post-harvest environment which make deceasing the quality and quantity of potatoes. Usually, irradiation with gamma isotope sources is used in food irradiation, however, the disadvantage of the gamma source is the safe shielding reason even without the use of irradiation. Nowadays, X-ray irradiation in food is one of the methods interest to storage in long time. The first advantage of X-ray irradiation is that most of aerobic bacteria in food is killed, but does it not change the quality of the potato. Moreever, the advantage of an X-ray generator is that it does not have to cover up radiation when not in use. In this study, we have used low energy X-rays emitted from X-ray generator MBR-1618R-BE (Hitachi -Japan) to study the ability to kill aerobic bacteria in potatoes grown in Da Lat. After preparation, potato samples were irradiated at doses ranging from 50 Gy to 5000 Gy. The irradiated samples were homogenized and inoculated on Nutrient Agar and incubated at 370C in an incubator to check the changes of aerobic bacteria. The research showed that the number of aerobic bacteria decreased dramatically to a dose of 1000 Gy (the aerobic bacteria was only less than 0,6%), despite a sharp increase in the dose of irradiation, this number decreased a little. The results also showed that D10 dose was 471,34 Gy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amardeep Bharti ◽  
Keun Hwa Chae ◽  
Navdeep Goyal

AbstractPlasmonic nanostructures are of immense interest of research due to its widespread applications in microelectronics, photonics, and biotechnology, because of its size and shape-dependent localized surface plasmon resonance response. The great efforts have been constructed by physicists, chemists, and material scientists to deliver optimized reaction protocol to tailor the size and shape of nanostructures. Real-time characterization emerges out as a versatile tool in perspective to the optimization of synthesis parameters. Moreover, in the past decades, radiation-induced reduction of metallic-salt to nanoparticles dominates over the conventional direct chemical reduction process which overcomes the production of secondary products and yields ultra-high quality and pure nanostructures. Here we show, the real-time/in-situ synthesis and detection of plasmonic (Au andAg) nanoparticles using single synchrotron monochromatic 6.7 keV X-rays based Nano-Tomography beamline. The real-time X-ray nano-tomography of plasmonic nanostructures has been first-time successfully achieved at such a low-energy that would be leading to the possibility of these experiments at laboratory-based sources. In-situ optical imaging confirms the radiolysis of water molecule resulting in the production of $$e_{aq}^-,\,OH^\bullet ,$$ e aq - , O H ∙ , and $$O_2^-$$ O 2 - under X-ray irradiation. The obtained particle-size and size-distribution by X-ray tomography are in good agreement to TEM results. The effect of different chemical environment media on the particle-size has also been studied. This work provides the protocol to precisely control the size of nanostructures and to synthesize the ultrahigh-purity grade monodisperse nanoparticles that would definitely enhance the phase-contrast in cancer bio-imaging and plasmonic photovoltaic application.


2000 ◽  
Vol 07 (04) ◽  
pp. 437-446 ◽  
Author(s):  
G. RENAUD

The application of X-rays to the structural characterization of surfaces and interfaces, in situ and in UHV, is discussed on selected examples. Grazing incidence X-ray diffraction is not only a very powerful technique for quantitatively investigating the atomic structure of surfaces and interfaces, but is also very useful for providing information on the interfacial registry for coherent interfaces or on the strain deformation, island and grain sizes for incoherent epilayers.


2011 ◽  
Vol 26 (2) ◽  
pp. 134-137 ◽  
Author(s):  
K. Matsui ◽  
A. Ogawa ◽  
J. Kikuma ◽  
M. Tsunashima ◽  
T. Ishikawa ◽  
...  

Hydrothermal formation reaction of tobermorite in the autoclaved aerated concrete (AAC) process has been investigated by in situ X-ray diffraction. High-energy X-rays from a synchrotron radiation source in combination with a newly developed autoclave cell and a photon-counting pixel array detector were used. XRD measurements were conducted in a temperature range 100–190°C throughout 12 h of reaction time with a time interval of 4.25 min under a saturated steam pressure. To clarify the tobermorite formation mechanism in the AAC process, the effect of Al addition on the tobermorite formation reaction was studied. As intermediate phases, non-crystalline calcium silicate hydrate (C-S-H), hydroxylellestadite (HE), and katoite (KA) were clearly observed. Consequently, it was confirmed that there were two reaction pathways via C-S-H and KA in the tobermorite formation reaction of Al containing system. In addition, detailed information on the structural changes during the hydrothermal reaction was obtained.


Sign in / Sign up

Export Citation Format

Share Document