Studies on Copper Nanometric-Film Deposited by an In-House Developed DC Magnetron Sputtering System

2022 ◽  
Vol 1048 ◽  
pp. 164-171
Author(s):  
Soumik Kumar Kundu ◽  
Samit Karmakar ◽  
Sujit Kumar Bandyopadhyay ◽  
Satyaranjan Bhattacharyya ◽  
Gouranga Sundar Taki

Copper nanofilms are extensively used in the field of material science research. Nanoparticles and nanostructures of copper have various utilities in the field of photocatalytic and sensor applications. The transition metal nanoparticles and nanostructures supply plenty free electrons which drastically enhances the optical and electrical properties compared to bulk material. Here, copper thin films have been deposited on glass slides and silicon substrates using an indigenously developed DC magnetron sputtering system. These depositions have been carried out at three different time spans keeping the magnetron discharge current, working vacuum and target to substrate distance unaltered. The objective of this work is to study the crystalline structure and measure the thickness of the copper nanofilm deposited at three different times. The synthesized films were characterized by using X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Secondary Ion Mass Spectrometer (SIMS). Characteristic peaks of copper (111) along with Cu2O (110), (220) and (111) were obtained from the XRD pattern. The average grain size of the deposited films has been calculated using Debye-Scherrer equation. The film thickness ranging from 80-160 nm for various time spans were measured from depth profile analysis using SIMS data.

2011 ◽  
Vol 217-218 ◽  
pp. 1743-1746
Author(s):  
Xing Long Guo

TiO2 with 20nm in diameter have been prepared by using magnetron sputtering technique. The structure of these powers was determined by X-ray diffraction experiments. The average grain size and particle size in these powers were measured by the line profile analysis method of X-ray diffraction patterns and by scan electron microscopy, respectively. The thin films were investigated by using XRD, SEM measurements.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 599
Author(s):  
Handan Huang ◽  
Li Jiang ◽  
Yiyun Yao ◽  
Zhong Zhang ◽  
Zhanshan Wang ◽  
...  

The laterally graded multilayer collimator is a vital part of a high-precision diffractometer. It is applied as condensing reflectors to convert divergent X-rays from laboratory X-ray sources into a parallel beam. The thickness of the multilayer film varies with the angle of incidence to guarantee every position on the mirror satisfies the Bragg reflection. In principle, the accuracy of the parameters of the sputtering conditions is essential for achieving a reliable result. In this paper, we proposed a precise method for the fabrication of the laterally graded multilayer based on a planetary motion magnetron sputtering system for film thickness control. This method uses the fast and slow particle model to obtain the particle transport process, and then combines it with the planetary motion magnetron sputtering system to establish the film thickness distribution model. Moreover, the parameters of the sputtering conditions in the model are derived from experimental inversion to improve accuracy. The revolution and rotation of the substrate holder during the final deposition process are achieved by the speed curve calculated according to the model. Measurement results from the X-ray reflection test (XRR) show that the thickness error of the laterally graded multilayer film, coated on a parabolic cylinder Si substrate, is less than 1%, demonstrating the effectiveness of the optimized method for obtaining accurate film thickness distribution.


2011 ◽  
Vol 239-242 ◽  
pp. 2752-2755
Author(s):  
Fan Ye ◽  
Xing Min Cai ◽  
Fu Ping Dai ◽  
Dong Ping Zhang ◽  
Ping Fan ◽  
...  

Transparent conductive Cu-In-O thin films were deposited by reactive DC magnetron sputtering. Two types of targets were used. The first was In target covered with a fan-shaped Cu plate of the same radius and the second was Cu target on which six In grains of 1.5mm was placed with equal distance between each other. The samples were characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV/VIS spectrophotometer, four-probe measurement etc. SEM shows that the surfaces of all the samples are very smooth. EDX shows that the samples contain Cu, In as well as O, and different targets result in different atomic ratios of Cu to In. A diffraction peak related to rhombohedra-centered In2O3(012) is observed in the XRD spectra of all the samples. For both the two targets, the transmittance decreases with the increase of O2flow rates. The direct optical band gap of all the samples is also estimated according to the transmittance curve. For both the two targets, different O2flow rates result in different sheet resistances and conductivities. The target of Cu on In shows more controllability in the composition and properties of Cu-In-O films.


2010 ◽  
Vol 66 ◽  
pp. 35-40 ◽  
Author(s):  
Erdem Baskurt ◽  
Tolga Tavşanoğlu ◽  
Yücel Onüralp

SiC films were deposited by reactive DC magnetron sputtering of high purity (99.999%) Si target. 3 types of substrates, AISI M2 grade high speed steel, glass and Si (100) wafer were used in each deposition. The effect of different CH4 flow rates on the microstructural properties and surface morphologies were characterized by cross-sectional FE-SEM (Field-Emission Scanning Electron Microscope) observations. SIMS (Secondary Ion Mass Spectrometer) depth profile analysis showed that the elemental film composition was constant over the whole film depth. XRD (X-Ray Diffraction) results indicated that films were amorphous. Nanomechanical properties of SiC films were also investigated.


2018 ◽  
Vol 348 ◽  
pp. 159-167 ◽  
Author(s):  
M. Trant ◽  
M. Fischer ◽  
K. Thorwarth ◽  
S. Gauter ◽  
J. Patscheider ◽  
...  

Author(s):  
Sonny Massahi ◽  
Desiree Ferreira ◽  
Michael Avngaard ◽  
Aksel Christensen ◽  
Daniel Haugbølle ◽  
...  

2008 ◽  
Vol 22 (14) ◽  
pp. 2275-2283 ◽  
Author(s):  
WEIDONG CHEN ◽  
LIANGHUAN FENG ◽  
ZHI LEI ◽  
JINGQUAN ZHANG ◽  
FEFE YAO ◽  
...  

Aluminum antimonide (AlSb) is thought to be a potential material for high efficiency solar cells. In this paper, AlSb thin films have been fabricated by DC magnetron sputtering on glass substrates. The sputtering target consists of aluminum and antimony, and the area ratio of Al to Sb is 7:3, which is derived from research into the relationship between the deposition rates of both the metals and sputtering power. XRD and AFM measurements show that the as-deposited films are amorphous, but become polycrystalline with an average grain size of about 20 nm after annealing in an argon atmosphere. From optical absorption measurements of annealed AlSb films, a band gap of 1.56 eV has been demonstrated. Hall measurements show that the films are p-type semiconductors. The temperature dependence of dark conductivity tested in vacuum displays a linear lnσ to 1/T curve, which indicates a conductivity activation energy of around 0.61 eV.


2009 ◽  
Vol 1156 ◽  
Author(s):  
Fridrik Magnus ◽  
Arni Sigurdur Ingason ◽  
Sveinn Olafsson ◽  
Jon Tomas Gudmundsson

AbstractUltrathin TiN films were grown by reactive dc magnetron sputtering on amorphous SiO2 substrates and single-crystalline MgO substrates at 600°C. The resistance of the films was monitored in-situ during growth to determine the coalescence and continuity thicknesses. TiN films grown on SiO2 are polycrystalline and have coalescence and continuity thicknesses of 8 Å and 19 Å, respectively. TiN films grow epitaxially on the MgO substrates and the coalescence thickness is 2 Å and the thickness where the film becomes continuous cannot be resolved from the coalescence thickness. X-ray reflection measurements indicate a significantly higher density and lower roughness of the epitaxial TiN films.


Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 253 ◽  
Author(s):  
Wei-Chun Chen ◽  
Chao-Te Lee ◽  
James Su ◽  
Hung-Pin Chen

Zirconium diboride (ZrB2) thin films were deposited on a Si(100) substrate using pulsed direct current (dc) magnetron sputtering and then annealed in high vacuum. In addition, we discussed the effects of the vacuum annealing temperature in the range of 750 to 870 °C with flowing N2 on the physical properties of ZrB2 films. The structural properties of ZrB2 films were investigated with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns indicated that the ZrB2 films annealed at various temperatures exhibited a highly preferred orientation along the [0001] direction and that the residual stress could be relaxed by increasing the annealing temperature at 870 °C in a vacuum. The surface morphology was smooth, and the surface roughness slightly decreased with increasing annealing temperature. Cross-sectional TEM images of the ZrB2/Si(100) film annealed at 870 °C reveals the films were highly oriented in the direction of the c-axis of the Si substrate and the film structure was nearly stoichiometric in composition. The XPS results show the film surfaces slightly contain oxygen, which corresponds to the binding energy of Zr–O. Therefore, the obtained ZrB2 film seems to be quite suitable as a buffer layer for III-nitride growth.


Sign in / Sign up

Export Citation Format

Share Document