Interfacial Morphology of Duplex Stainless Steel Joints Brazed with Ni-Cr-Si-B Filler Metal

2004 ◽  
Vol 449-452 ◽  
pp. 889-892
Author(s):  
H.K. Lee ◽  
Chung Yun Kang ◽  
C.S. Woo ◽  
S.H. Kim ◽  
Dae Up Kim

Microstructures of 0.18wt% nitrogen-contained duplex stainless steel, SUS329J3L brazed in a vacuum furnace of 10-4torr, have been investigated as a function of bonding temperatures (1453-1523K) and holding times (0-1.8ks). An amorphous alloy, MBF50 (Ni-19.5wt%Cr-7.3wt%Si -1.5wt%B), was used as an insert metal. At an early stage at 1453K and 1473k, a morphology change of the insert metal, BN and CrB phase appeared only at the joints. The BN and Cr-Si-N phase were observed at the interface of the joints brazed under other conditions. The volume fraction of BN increased rapidly at an early stage and decreased with increasing holding time. The phase seemed to have been formed by dissolution of the base metal and the diffusion process. BN was formed easily due to the lowest Gibbs free energy. Boron content in liquid insert metal becomes low due to the formation of a large number of BNs at the bonded interlayer by holding for a few minutes at brazing temperature. This caused the rapid isothermal solidification of the liquid insert metal. Thus, it is clear that the isothermal solidification process of this bonding is controlled by the formation of boron nitrides as opposed to the diffusion process of depressant elements(B and Si) in the base metal.

2016 ◽  
Vol 23 (03) ◽  
pp. 1650013 ◽  
Author(s):  
MOHAMMED ASIF M. ◽  
KULKARNI ANUP SHRIKRISHNA ◽  
P. SATHIYA

The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080[Formula: see text]C, 1150[Formula: see text]C and 1200[Formula: see text]C with 15[Formula: see text]min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080[Formula: see text]C followed by water quench and at 1150[Formula: see text]C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov–Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100[Formula: see text]C and that for oil quenching was around 1140[Formula: see text]C. The pit depths were found to be in the range of 100[Formula: see text]nm and width of 1.5–2[Formula: see text][Formula: see text]m.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chuanbo Zheng ◽  
Cheng Zhang ◽  
Xiao Yong Wang ◽  
Jie Gu

Purpose Duplex stainless steel is composed of equal amounts of austenite and ferrite, which has excellent corrosion resistance and strength. However, after the metal was welded, the ratio of austenite and ferrite in the joint is unbalanced, and secondary phase precipitates are produced, which is also an important cause of pitting corrosion in the joint. Design/methodology/approach This paper aims to study the mechanical and corrosion behavior of welded joints, by adjusting the welding parameters of laser hybrid welding, dual heat sources are used to weld 2205 duplex stainless steel. The two-phase content of different parts of the welded joint is measured to study the influence of the ratio of the two-phase on the mechanical and corrosion properties of the joint. Findings The ratio of austenite and ferrite in different welded joints has an obvious difference, and from top to bottom, the austenite content decreased gradually, and the ferrite content increased gradually. The harmful phases are precipitated in the middle and lower part of the joint. The strength of welded joints is slightly lower than that of base metal. At the same time, the fracture analysis shows that some ferrite phases are affected by the precipitate in the grain and produce quasi-cleavage fracture. The corrosion results show that the corrosion resistance of the welded joints is lower than that of the base metal, and the concentration of chloride ions affects the corrosion resistance. Originality/value In this paper, the authors use the influence of different welding processes on the two-phase ratio of the joint to further study the influence of the microstructure on the corrosion resistance and mechanical properties of the weld.


2020 ◽  
Vol 34 (25) ◽  
pp. 2050269
Author(s):  
Yuqi Mao ◽  
Yuehong Zheng ◽  
Yu Shi ◽  
Min Zhu ◽  
Saitejin ◽  
...  

In order to further expand the application scope of 2205 duplex stainless steel (DSS), its microstructure and mechanical properties require as much attention as its corrosion properties. In this study, 2205DSSs were prepared by aluminothermic reaction and the microstructures and mechanical behavior of the rolled alloys were analyzed. The micro-nanocrystals composite structure appears in the alloys after rough rolling with deformation of 40% at [Formula: see text]C followed by finishing rolling with deformation of 30%, 50% and 70% at [Formula: see text]C. With the increase of rolling deformation, the two-phase structure is gradually elongated, the average size of the two-phase grains is gradually increased, and some [Formula: see text] phase will change to [Formula: see text] phase, the volume fraction of [Formula: see text] phase is gradually increased, and the distribution of nanocrystals is gradually uniform. Meanwhile, the fracture mode of alloy is gradually changed from ductile fracture to brittle fracture. The strength and hardness of the alloy increase gradually.


2018 ◽  
Vol 786 ◽  
pp. 119-127
Author(s):  
Sameh M. Khafagy ◽  
Morsy Amin Morsy ◽  
H.M. El Sherbini ◽  
Y.F. Barakat

It is known that heat treatment (HT) highly affects the properties of base metal (BM) and fusion zones (FZ) of duplex stainless steel (DSS). In fact, it may give unwanted structure changes. Duplex stainless steels SAF 2205 welded joint was subjected to thermal cycle at temperature of 850◦C at holding times 1, 3, 5 and 7 hours. The influence of heating cycles and concentration of corrosive medium on the corrosion properties and microstructure of 2205 alloy was the objective of this work. It was found that process led to noticeable decrease in the corrosion resistance of BM and FZ specimens; moreover the decrease was large in BM than FZ. It was also found that sigma phase (σ) precipitated in the different zones of the structure. σ phase volume fraction was found to increase with increasing the holding time of HT, and its increase is larger in BM. Corrosion resistance was found to be oppositely related to σ phase formation. Secondary austenite phase (γ2) was also precipitated and its volume fraction in FZ was found to increase with increasing the holding time of HT and decreased in BM.


2013 ◽  
Vol 684 ◽  
pp. 325-329 ◽  
Author(s):  
Tian Liang ◽  
Xiao Qiang Hu ◽  
Xiu Hong Kang ◽  
Dian Zhong Li

With about equal amount of austenite and ferrite in volume fraction, duplex stainless steel (DSS) is in advantage of mechanical properties and corrosive behaviors. Hence it is widely applied to the heavy castings for nuclear power plants inshore, such as impellers, pumps and valves. However, lots of cracks usually occur in these castings during manufacturing processes, because it is susceptible to precipitate the brittle intermetallic compound of sigma phase when the castings are exposed from 600 to 1000oC. In this work, the precipitation of sigma phase was observed by optical microscope (OM) and scanning electron microscope (SEM) in a cast DSS named as MAS/6001, which aged at 850oC from 5 to 300 minutes. The effect of sigma phase on the mechanical properties was analyzed by the tensile at room temperature and impact tests at -10°C. The results show that sigma phase in the MAS/6001 steel precipitated simultaneously with the secondary austenite, which obeyed the eutectoid reaction. The interfaces between austenite or secondary austenite and sigma phase were the locations where cracks generated from the void aggregation. Cracks are susceptible to propagate along or cross these interfaces, and to promote the sigma phase breaking-off, which severely deteriorated the mechanical properties.


2011 ◽  
Vol 391-392 ◽  
pp. 763-767
Author(s):  
Li Yang ◽  
Na Zhang

On the basis of the analysis of composition, microstructure, properties and weldability of 2205 duplex stainless steel, the flux cored arc welding (FCAW) process is made. Then the microstructure, mechanical properties and corrosion resistance of welded joint were analyzed. The results shows using FCAW process, in order to obtain high strength, perfect impact toughness and overall and partial resistance to stress corrosion in welded joint, the Ni content of duplex stainless steel welding material should be 2% to 4% higher than that of base metal, multi-layer and multi-channel welding is adopted with the strict control of energy input less than or equal to 0.926KJ/mm, layer temperature is less than 120 °C, thus the appropriate proportion of two-phase structure in the welded joint can be got. Using a reasonable welding procedure, the microstructure in weld beam is austenite (A) + ferrite (F), and in heat affected zone is ferrite (F) + austenite (A) + a small amount of third phase, the content of austenite in weld beam and heat affected zone is higher than that of the base metal. Tensile strength of the welded joint is up to 854.5MPa and the fracture occurs in the base metal and the heat affected zone. The welded joint has high strength, good plasticity, toughness and corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document