Flow Stress Behavior and Deformation Characteristics of Ti-22Al-25Nb Alloys at Elevated Temperature

2005 ◽  
Vol 475-479 ◽  
pp. 825-828
Author(s):  
Xiao Bo Liang ◽  
Shi Qiong Li ◽  
Yun Jun Cheng ◽  
Jian Wei Zhang

The characteristics of deformation of an orthorhombic phase based alloy, Ti-22Al-25Nb (at%), have been studied by hot compression tests in the temperature range of 940-1150°C with the strain rates of 0.01s-1 and 0.1s-1. A flow curves typically controlled by dynamic recovery were observed in the temperature range of 1090-1150 °C for the strain rate of 0.01s-1 , while discontinuous yield phenomena was found for the strain rate of 0.1s-1. The dynamic recovery can be identified by the microstructure characteristics of the deformation specimens. At 1060°C, the temperature of beta transus, the flow curves and microstructure exhibited the same deformation charateristics as that above the beta transus. At the subtransus temperature, a long period of flow softening followed by the steady-state flow can be observed. During the hot deformation, the hard phases α2 and O elongated, subboundary produced followed by cusp formation in the elongated α2 and O phases, the equiaxed morphology phases occurred by B2 phase penetrating along the subboundaries. The softening mechanism was discussed.

2012 ◽  
Vol 567 ◽  
pp. 244-249
Author(s):  
Yu Hua Zhang ◽  
Guang Yu Tan ◽  
Shu Cai Yang

The flow stress change of 3Cr1Mo0.25V steel was researched in this paper through hot compression tests performed in a temperature range from 800 to 900oC and with a strain rate variation from 0.01 to 10s-1. Flow stress constitutive equation was constructed according to true stress-strain curves of 3Cr1Mo0.25V steel. Results indicate that the dynamic recovery is the dynamic softening mechanism of 3Cr1Mo0.25V steel. The flow stress increases with increasing strain rates and decreases with increasing temperature. The rheological behavior of 3Cr1Mo0.25V steel can be characterized by the parameter of Zener-Hollomon in a high temperature range. As for 3Cr1Mo0.25V steel, the activation energy of Q evaluated by the linear regression is about 142.9 kJ/mol.


Author(s):  
Amir Hosein Sheikhali ◽  
Maryam Morakkabati

Abstract In this study, hot deformation behavior of SP-700 titanium alloy was investigated by hot compression tests in the temperature range of 700-9508C and at strain rates of 0.001, 0.1, and 1 s-1. Final mechanical properties of the alloy (hot compressed at different strain rates and temperatures) were investigated using a shear punch testing method at room temperature. The flow curves of the alloy indicated that the yield point phenomenon occurs in the temperature range of 800- 9508C and strain rates of 0.1 and 1 s-1. The microstructural analysis showed that dynamic globularization of the lamellar α phase starts at 7008C and completes at 8008C. The alpha phase was completely eliminated from b matrix due to deformation- induced transformation at 8508C. The microstructure of specimens compressed at 8508C and strain rates of 0.001 and 0.1 s-1showed the serration of beta grain boundaries, whereas partial dynamic recrystallization caused a necklace structure by increasing strain rate up to 1 s-1. The specimen deformed at 7008C and strain rate of 1 s-1was located in the instability region and localized shear bands formed due to the low thermal conductivity of the alloy. The processing map of the alloy exhibited a peak efficiency domain of 54% in the temperature range of 780-8108C and strain rates of 0.001- 0.008 s-1. The hot deformation activation energy of the alloy in the α/β region (305.5 kJ mol-1) was higher than that in the single-phase β region (165.2 kJ mol-1) due to the dynamic globularization of the lamellar a phase.


2017 ◽  
Vol 898 ◽  
pp. 137-143
Author(s):  
Lin Xiang ◽  
Bin Tang ◽  
Hong Chao Kou ◽  
Jie Shao ◽  
Jin Shan Li

Isothermal compression tests were conducted to investigate the effect of hot deformation parameters on flow behavior and microstructure of Ti-6Al-4V-0.2O alloy. The experimental results show that the strain rate and height reduction have little effect on the volume fraction of primary α at a deformation temperature of 860 ̊C. At a deformation temperature of 940 ̊C, the volume fraction of primary α at a high strain rate (10s-1) is about 10% less than that at low strain rates (0.01s-1~1s-1). It may be one of the reasons for the significantly discontinuous yielding phenomenon. Another reason is that the dislocation density decreased suddenly due to the dynamic recovery. With the increasing strain rate and the decreasing deformation temperature, the volume fraction of irregular secondary α increases and lamellar secondary α decreases. And with height reduction increasing, the irregular secondary α increases firstly and then tends to be steady because of dynamic recovery and recrystallization.


2014 ◽  
Vol 670-671 ◽  
pp. 33-36
Author(s):  
Horng Yu Wu ◽  
Ming Chieh Lin ◽  
Feng Jun Zhu ◽  
Cheng Tao Wu ◽  
Ching Hao Liao ◽  
...  

The flow behavior and associated microstructural changes of wrought 6069 Al alloy deformed in tension were analyzed in this work. Tensile tests were conducted on an extruded tube with a thickness of 1.6 mm in the temperature range of 300–500 oC, with initial strain rates from 0.001 to 0.1 s-1. The true stress–true strain curves exhibited a peak stress at a critical strain. The overall level of the flow curve increased when the strain rate was increased and/or the temperature was decreased. The flow curves exhibited a typical flow behavior with dynamic softening and showed that the softening degree after reaching the peak stress was dependent on the deformation conditions. This could be related to the softening mechanism. The main softening mechanism of the alloy was dynamic recovery (DRV) at low temperatures; dynamic recrystallization (DRX) occurred as deformed at high temperatures.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 844 ◽  
Author(s):  
Wang ◽  
Shen ◽  
Zhang ◽  
Ning

The hot deformation behavior of the aerospace Ti-10-2-3 alloy was investigated by isothermal compression tests at temperatures of 740 to 820 °C and strain rates of 0.0005 to 10 s−1. The results show that the studied alloy is extremely sensitive to deformation parameters, like the temperature and strain rate. The temperature mainly affects the magnitude of flow stress at larger strains, while the strain rate not only affects the value of flow stress but also the shape of the flow curves. At low strain rates, the flow stress increases with strain, followed by a broad peak and then remains almost constant. At high strain rates, the flow curves exhibit a hardening to a sharp peak at small strains, followed by a rapid dropping to a plateau caused by dynamic softening. In order to describe such flow behavior, a constitutive model considering the effect of deformation parameters was developed as an extension of an existing constitutive model. The modified constitutive model (MC) was obtained based on the original constitutive model (OC) by introducing a new parameter to compensate for the error between the experimental data and predicted values. Compared to the original model, the developed model provides a better description of the flow behavior of Ti-10-2-3 alloy at elevated temperatures over the specified deformation domain.


2020 ◽  
Vol 118 (1) ◽  
pp. 107
Author(s):  
Maryam Kamali Ardakani ◽  
Maryam Morakabati

The hot deformation behavior of a H10 hot work tool steel was studied by performing hot compression tests over the temperature range of 900 to 1200 °C and strain rates of 0.001–1 s−1 and total strain of 0.7. At temperatures below 1100 °C, the grain size is fine and below 20 μm. In this temperature range, grain size increase with temperature due to dissolution of carbides. Then by increasing temperature to 1150 and 1200 °C, the grain size is increased significantly due to growth of grains. The study on the effect of strain rate showed that at constant temperature of 1000 °C, the grain size increased from 4.8 to 6 μm with increasing strain rate from 0.001 to 1 s−1. Also, this increase in the strain rate at temperature of 1100 °C lead to increase the grain size from 5.9 to 17 μm, due to the occurrence of dynamic recrystallization. At 1200 °C growth of grains causes to decrease grain size from 112 to 87 μm by increasing strain rate. According to the microstructural investigations, at the temperatures of 1000 and 1100 °C and strain rates of 0.01 and 0.1 s−1 dynamic recrystallization was the main softening mechanism. As a result, the most suitable range for hot deformation was obtained at the temperature range of 1000–1100 °C and strain rates of 0.01–0.1 s−1.


Author(s):  
Ignacio Alcelay ◽  
Esteban Peña ◽  
Anas Al Omar

Abstract In this paper the hot working behaviour of medium carbon duplex cast steel is studied using uniaxial hot compression tests over a temperature range varying from 700 ˚C to 1 000 °C and at different strain rates ranging from 10–4 to 10–1 s–1. A model based on a variant of a dynamic materials model was employed to construct processing maps. These maps delineate the safe and unsafe domains. The safe domains, associated with dynamic recrystallization and dynamic recovery, can be chosen to optimize the hot workability of the studied material. Whereas, the unsafe domain is to be avoided because it is associated with plastic deformation instabilities. The domain associated with dynamic recrystallization is centred at 1000 °C and 10–4 s–1 with a peak energy dissipation efficiency of about 40%, while the domain associated with dynamic recovery is centred at 700 °C and 10–4 s–1 with a peak energy dissipation efficiency of about 27%. The unsafe hot working domain, spread over the entire temperature range and moderate to high strain rates, predicts the appearance of flow instabilities, in the form of shear bands and intergranular cracks. To validate the obtained results, microstructural observations corresponding to different processing conditions are presented.


2004 ◽  
Vol 449-452 ◽  
pp. 577-580
Author(s):  
Young Sang Na ◽  
Young Mok Rhyim ◽  
J.Y. Lee ◽  
Jae Ho Lee

In order to quantitatively analyze the critical strain for the initiation of dynamic recrystallization in Ni-Fe-based Alloy 718, a series of uniaxial compression tests was conducted in the temperature range 927°C - 1066°C and the strain rate range 5 x 10-4s-1- 5 s-1with varying initial grain size. The critical strains were graphically determined based on one parameter approach and microscopically confirmed. The effect of γ'' (matrix-hardening phase) and δ (grain boundary phase)on the critical strain was simply discussed. The constitutive model for the critical strain of Alloy 718 was constructed using the experimental data obtained from the higher strain rate and the temperature range between 940°C and 1040°C.


2014 ◽  
Vol 626 ◽  
pp. 353-358
Author(s):  
Geun Su Joo ◽  
Min Kuk Choi ◽  
Hoon Huh

The tension/compression hardening behavior is important in sheet metal forming processes because of complicated loading paths. Experimental methods to measure the tension/ compression behavior have not considered the effect of the strain rate although the strain rate is related to the hardening behavior of sheet metal. The tension/compression tests need to be conducted considering the strain rate to acquire accurate hardening behavior.This paper deals with an experimental technique to measure the tension/compression behavior of sheet metal at various strain rates. A new clamping device was developed to prevent a sheet specimen from buckling under compression loading condition. Compared to previous clamping devices, the clamping device was devised to uniformly impose a clamping force and easily measure the strain from side of a specimen. Tension/compression tests have been conducted at various strain rates for SPCC and DP590 with displacement of 10%. Hardening curves under the tension or compression loading condition were obtained and analyzed with respect to the strain rate.


1992 ◽  
Vol 114 (1) ◽  
pp. 13-18 ◽  
Author(s):  
F. Wang ◽  
J. G. Lenard

Ring compression tests were conducted at constant true strain rates in the temperature range of 900–975°C. The constant friction shear factor, m, was determined using a calibration chart. Scaling was permitted during the experiments in which a glass based lubricant was also used. Frictional conditions were affected most by the rate of strain; increasing it led to lower values of m.


Sign in / Sign up

Export Citation Format

Share Document