New High-Voltage Unipolar Mode p+ Si/n– 4H-SiC Heterojunction Diode

2005 ◽  
Vol 483-485 ◽  
pp. 953-956 ◽  
Author(s):  
Tetsuya Hayashi ◽  
Hideaki Tanaka ◽  
Yoshio Shimoida ◽  
Satoshi Tanimoto ◽  
Masakatsu Hoshi

We demonstrate a new high-voltage p+ Si/n- 4H-SiC heterojunction diode (HJD) by numerical simulation and experimental results. This HJD is expected to display good reverse recovery because of unipolar action similar to that of a SiC Schottky barrier diode (SBD) when forward biased. The blocking voltage of the HJD is almost equal to the ideal level in the drift region of n- 4H-SiC. In addition, the HJD has the potential for a lower reverse leakage current compared with the SBD. A HJD was fabricated with p+-type polycrystalline silicon on an n--type epitaxial layer of 4H-SiC. Measured reverse blocking voltage was 1600 V with low leakage current. Switching characteristics of the fabricated HJD showed nearly zero reverse recovery with an inductive load circuit.

2017 ◽  
Vol 10 (12) ◽  
pp. 121002 ◽  
Author(s):  
Kazuya Hasegawa ◽  
Go Nishio ◽  
Kota Yasunishi ◽  
Nariaki Tanaka ◽  
Noriaki Murakami ◽  
...  

2018 ◽  
Vol 924 ◽  
pp. 568-572 ◽  
Author(s):  
Arash Salemi ◽  
Hossein Elahipanah ◽  
Carl Mikael Zetterling ◽  
Mikael Östling

Implantation-free mesa etched ultra-high-voltage 4H-SiC PiN diodes are fabricated, measured and analyzed by device simulation. The diode’s design allows a high breakdown voltage of about 19.3 kV according to simulations. No reverse breakdown is observed up to 13 kV with a very low leakage current of 0.1 μA. A forward voltage drop (VF) and differential on-resistance (Diff. Ron) of 9.1 V and 41.4 mΩ cm2are measured at 100 A/cm2, respectively, indicating the effect of conductivity modulation.


2000 ◽  
Vol 657 ◽  
Author(s):  
Eivind Lund ◽  
Terje G. Finstad

ABSTRACTWe have performed new measurements of the temperature and doping dependency of the piezoresistive effect in p-type silicon. Piezoresistivity is one of the most common sensing principles of micro-electro-mechanical-systems (MEMS). Our measurements are performed in a specially designed setup based on the well-known 4 point bending technique. The samples are beams of full wafer thickness. To minimize leakage currents and to obtain uniform doping profiles, we have used SIMOX (Separation by IMplantation of OXygen) substrates with resistors defined in an epitaxial layer. Spreading resistance measurements show that the doping profiles are uniform with depth, while measurements of leakage current versus temperature indicate low leakage current. In this paper we present results for the doping concentration range from 1×1017 – 1×1020 cm−3 and the temperature range from –30 to 150 degrees Celsius. The results show a doping dependency of piezoresistivity well described by the current models. The measurements of the temperature dependency of the coefficients of piezoresistivity are compared to a linear model with a negative temperature coefficient whose absolute value decreases with increasing doping.


2006 ◽  
Vol 45 (No. 11) ◽  
pp. L319-L321 ◽  
Author(s):  
Norio Tsuyukuchi ◽  
Kentaro Nagamatsu ◽  
Yoshikazu Hirose ◽  
Motoaki Iwaya ◽  
Satoshi Kamiyama ◽  
...  

2007 ◽  
Vol 556-557 ◽  
pp. 877-880 ◽  
Author(s):  
Akimasa Kinoshita ◽  
Takashi Nishi ◽  
Tsutomu Yatsuo ◽  
Kenji Fukuda

Ion implantation and a subsequent annealing at high temperature are required for fabricating a high voltage Schottky Barrier Diode (SBD) with a field limiting ring (FLR) or a junction termination extension (JTE), but high temperature annealing degrades surface condition of a SiC substrate and induces a degradation of electronic characteristics of a fabricated SBD. To avoid a degradation of SBD electronic characteristics after high temperature annealing, the method of removing a degraded layer from a SiC surface by sacrificial oxidation after high temperature annealing is studied. In this study, we studied the relationship between the improvement of SBD electronic characteristics and the thickness of sacrificial oxide grown after high temperature annealing. 9~12 SBD without edge termination were fabricated on a SiC substrate of 4mm×4mm. The ratio of good chips to all chips (9~12 SBD) increases with increasing total thickness of sacrificial oxide grown after high temperature annealing at 1800oC for 30 s, where an SBD with a leakage current less than 1μA/cm2 at reverse voltage of –100V was defined as a good chip. We applied this process growing sacrificial oxide of 150nm after high temperature annealing to fabricate the SBD with an FLR structure designed with 600V blocking voltage on a Si-face SiC substrate. The SBD with an FLR structure through this process of 150 nm sacrificial oxide is low leakage current of less than 1μA/cm2 at reverse voltage of –100V and achieves 600V blocking voltage, however, the SBD with an FLR structure without the process of sacrificial oxide after high temperature annealing is high leakage current at reverse voltage of –100V. It is shown that this process growing sacrificial oxide after high temperature annealing is useful to fabricate an SBD with an FLR structure.


2020 ◽  
Vol 242 ◽  
pp. 122526 ◽  
Author(s):  
Dongji Liu ◽  
Weiqing Wang ◽  
Kuan Cheng ◽  
Qingyun Xie ◽  
Yuanxiang Zhou ◽  
...  

2013 ◽  
Vol 1561 ◽  
Author(s):  
Shojan P. Pavunny ◽  
Pankaj Misra ◽  
Reji Thomas ◽  
Ashok Kumar ◽  
James F. Scott ◽  
...  

ABSTRACTA detailed analysis of leakage current density-gate voltage measurements of gate stacks composed of PLD grown ultra thin films of LaGdO3 (LGO) on p-type silicon substrates with 8.4 Å EOT is presented. Temperature dependent leakage measurements revealed that forward bias current was dominated by Schottky emission over trap assisted tunneling below 1.2 MV/cm and quantum mechanical tunneling above this field. The physical origin of the reverse bias current was found to be a combination of Schottky emission and trap assisted tunneling. Low leakage current densities in the range from 2.3×10-3 to 29×10-3 A/cm2 were recorded for films with EOT from 1.8 to 0.8 nm, that are at least four or more orders below the ITRS specifications and its SiO2 competitors.


Sign in / Sign up

Export Citation Format

Share Document