Temperature Effect on Tensile Behavior of Helical Multi-Shell Gold Nanowires

2006 ◽  
Vol 505-507 ◽  
pp. 385-390 ◽  
Author(s):  
Jenn Sen Lin ◽  
Shin Pon Ju ◽  
Yu-Lin Peng ◽  
Wen Jay Lee

This study performs molecular dynamics (MD) simulations to investigate the tensile behavior of Helical Multi-Shell (HMS) gold nanowires. As their name suggests, these nanowires have a multi-shell helical structure rather than a conventional bulk FCC structure. The mechanical properties and deformation behaviors of the 7-1, 11-4 and 14-7-1 HMS structures are examined under tensile testing at temperatures between 4K and 300 K and a constant strain rate of 0.003% −1 ps . The results reveal that temperature influences the yielding stress, the Young’s modulus, and the deformation behaviors of HMS nanowires. The yielding stress of the 7-1 structure is found to be higher than that of the 11-4 or 14-7-1 structures. Finally, under different temperature conditions, many different close-packed structures are identified in the nanowires before they fracture.

2007 ◽  
Vol 121-123 ◽  
pp. 401-406
Author(s):  
Jenn Sen Lin ◽  
Shin Pon Ju ◽  
M.H. Weng ◽  
Wen Jay Lee

In this study, the molecular dynamics is employed to simulate the selfassembly of crossed gold nanowires at various temperatures. The nanowires with a multi-shell helical (HMS) structure are different from those of the bulk FCC structure. This work compares the morphology of crossed HMS nanowires with 7-1 structure after self-assembly and investigates the atom motion trajectory on the joint. The structure transform are observed from helical structure to FCC structure by angular correlation function (ACF). The results can be suggested for a nano-scale circuit design.


2018 ◽  
Vol 54 (4) ◽  
pp. 3096-3110 ◽  
Author(s):  
Juan Chen ◽  
Junqin Shi ◽  
Zhi Chen ◽  
Meng Zhang ◽  
Weixiang Peng ◽  
...  

Author(s):  
Peyman Honarmandi ◽  
Philip Bransford ◽  
Roger D. Kamm

Mechanical properties of biomolecules and their response to mechanical forces may be studied using Molecular Dynamics (MD) simulations. However, high computational cost is a primary drawback of MD simulations. This paper presents a computational framework based on the integration of the Finite Element Method (FEM) with MD simulations to calculate the mechanical properties of polyalanine α-helix proteins. In this method, proteins are treated as continuum elastic solids with molecular volume defined exclusively by their atomic surface. Therefore, all solid mechanics theories would be applicable for the presumed elastic media. All-atom normal mode analysis is used to calculate protein’s elastic stiffness as input to the FEM. In addition, constant force molecular dynamics (CFMD) simulations can be used to predict other effective mechanical properties, such as the Poisson’s Ratio. Force versus strain data help elucidate the mechanical behavior of α-helices upon application of constant load. The proposed method may be useful in identifying the mechanical properties of any protein or protein assembly with known atomic structure.


2019 ◽  
Vol 21 (31) ◽  
pp. 17393-17399 ◽  
Author(s):  
Yuxin Zhao ◽  
Xiaoyi Liu ◽  
Jun Zhu ◽  
Sheng-Nian Luo

The mechanical properties of graphene–Cu nanolayered (GCuNL) composites under bend loading are investigated via an energy-based analytical model and molecular dynamics (MD) simulations.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Ningbo Liao ◽  
Ping Yang ◽  
Miao Zhang ◽  
Wei Xue

Heat transfer across the interfaces of dissimilar materials is a critical consideration in a wide variety of scientific and engineering applications. In this paper, molecular dynamics (MD) simulations are conducted to investigate the effects of thermal loading on mechanical properties of Al–Cu and Cr–Cu interfaces. The mechanical properties are investigated by MD simulations of nanoindentation. Both the results of MD simulations and experiments show the Young’s modulus decrease after thermal cycling, and the Cr–Cu interface is more sensitive to the thermal loading than the Al–Cu interface. The thermal loading and mechanical test models proposed here can be used to evaluate interfacial properties under the effects of heat transferring.


2014 ◽  
Vol 788 ◽  
pp. 243-248 ◽  
Author(s):  
Bao Kang Gu ◽  
Da Tong Zhang

In this study, 5083 aluminum alloy plates with a thickness of 3mm are friction stir welded and the microstructure and mechanical properties of the joints were characterized. In particular, tensile behavior of the joints is examined at 77K. It is found that defect-free joints can be obtained under a tool rotational rate of 800rpm and a welding speed of 60mm/min. The friction stirring welds exhibit finer microstructure and higher hardness than that of the base material due to the grain refinement. The ultimate tensile strength (UTS) and elongation of the joints measured at 298K are 316MPa and 21.3%, which are nearly equal to those of the base material. With the tensile test temperature decreasing to 77K, UTS and elongation of both the base material and joints increase. Comparing with tensile testing at 298K, dimples on the fracture surface of the samples tested at 77K are more uniform in distribution. The improvement of the mechanical properties of specimens at low temperature is related to the inactivation of planar slip and the strengthening of strain hardening.


2019 ◽  
Vol 9 (2) ◽  
pp. 352 ◽  
Author(s):  
Yu Zhou ◽  
Wu-Gui Jiang ◽  
Duo-Sheng Li ◽  
Qing-Hua Qin

The mechanical behavior of nanocomposites consisting of highly ordered nanoporous nickel (HONN) and its carbon nanotube (CNT)-reinforced composites (CNHONNs) subjected to a high temperature of 900 K is investigated via molecular dynamics (MD) simulations. The study indicates that, out-of-plane mechanical properties of the HONNs are generally superior to its in-plane mechanical properties. Whereas the CNT shows a significant strengthening effect on the out-of-plane mechanical properties of the CNHONN composites. Compared to pure HONNs, through the addition of CNTs from 1.28 wt‰ to 5.22 wt‰, the weight of the composite can be reduced by 5.83‰ to 2.33% while the tensile modulus, tensile strength, compressive modulus and compressive strength can be increased by 2.2% to 8.8%, 1% to 5.1%, 3.6% to 10.2% and 4.9% to 10.7%, respectively. The energy absorption capacity can also be improved due to the existence of CNTs. Furthermore, the MD simulations provide further insights into the deformation mechanism at the atomic scale, including fracture in tension, pore collapse in compression and local changes in lattice structures due to stacking faults.


RSC Advances ◽  
2015 ◽  
Vol 5 (68) ◽  
pp. 55383-55395 ◽  
Author(s):  
Hui-Lung Chen ◽  
Shin-Pon Ju ◽  
Tsang-Yu Wu ◽  
Shih-Hao Liu ◽  
Hsin-Tsung Chen

The investigations on the structural properties and local deformation mechanism of Ti60Zr10Ta15Si15 bulk metallic glass (BMG) have been conducted by using molecular dynamics (MD) simulations for the uniaxial tension process.


1996 ◽  
Vol 457 ◽  
Author(s):  
Kenji Tsuruta ◽  
Andrey Omeltchenko ◽  
Aiichiro Nakano ◽  
Rajiv K. Kalia ◽  
Priya Vashishta

ABSTRACTMillion-atom molecular-dynamics (MD) simulations are performed to study the structure, mechanical properties, and dynamic fracture in nanophase Si3N4. We find that intercluster regions are highly disordered: 50% of Si atoms in intercluster regions are three-fold coordinated. Elastic moduli of nanophase Si3N4 as a function of grain size and porosity are well described by a multiphase model for heterogeneous materials. The study of fracture in the nanophase Si3N4 reveals that the system can sustain an order-of-magnitude larger external load than crystalline Si3N4. This is due to branching and pinning of the crack front by nanoscale microstructures.


Sign in / Sign up

Export Citation Format

Share Document