Effect of Compatibilizers on the Properties of Nano-Hydroxyapatite Reinforced Polyamide 66 and High Density Polyethylene Blends

2006 ◽  
Vol 510-511 ◽  
pp. 978-981 ◽  
Author(s):  
Yi Zuo ◽  
Yu Bao Li ◽  
Xiang Zhang ◽  
Wei Hu Yang ◽  
Ji Dong Li ◽  
...  

The compatibility efficiency on different compatibilizer for nano-hydroxyapatite (n-HA) reinforced polyamide 66 (PA66) and high density polyethylene (HDPE) blends at a composition of 40/42/18 as functionalized biomaterial was investigated by mechanical properties testing and scanning electron microscopy (SEM). The results showed that mechanical properties of compatibilized blends were much improved by the compatibilizers of maleic anhydride grafted polyethylene (PE-g-MAH) and ethylene/methacrylic acid ionomer-sodium ion (ION) compared with the uncompatibilized blends. Blends had peak mechanical values of different compatibilizer. Both PE-g and ION formed adhesion during melt mixing and stabilized the morphology and significantly reduced the size of dispersed PE phase. PE-g gave the blends with PE spheres ranging from 1 to 4µm and ION with well-dispersed spheres with an average diameter of 1µm. The more enlarged interphase of the blends containing ION reduced the lower interfacial energy to increase the miscibiliy of the blends. Consequently, ION had better contribution to rigidity properties than PE-g for n-HA/PA/PE blends.

Author(s):  
Atul Rajan ◽  
Pradeep Upadhyaya ◽  
Vijai Kumar ◽  
Navin Chand

This paper presents a part of research on the mechanical properties of compatibilized Poly (ethylene-co-vinyl acetate) (EVA)/ high density polyethylene (HDPE)/ organo modified montmorillonite (OMMT) nanocomposites prepared by melt mixing technique. Use of maleic anhydride grafted polyethylene (MA-g-PE) as Compatibilizer improves compatibility of EVA and HDPE. Blends containing EVA/HDPE blend with 2 phr MA-g-PE shows optimum properties. It observes that the addition of nanoclay improves the mechanical properties like tensile strength, flexural modulus, abrasion resistance and hardness of compatibilized nanocomposites systems. The morphology is studied by Scanning Electron Microscopy (SEM). The optimized properties occurrs at clay loading levels of 4 phr with MA-g-PE system.


2019 ◽  
Vol 69 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Luis Quiles‐Carrillo ◽  
Nestor Montanes ◽  
Vicent Fombuena ◽  
Rafael Balart ◽  
Sergio Torres‐Giner

2015 ◽  
Vol 30 (6) ◽  
pp. 855-884 ◽  
Author(s):  
AK Sudari ◽  
AA Shamsuri ◽  
ES Zainudin ◽  
PM Tahir

Three types of surfactants, specifically cationic, anionic, and nonionic, at different weight percentages were added into high-density polyethylene/low-density polyethylene/cellulose (HDPE/LDPE/cellulose) biocomposites via melt mixing. The cationic and anionic surfactants which are hexadecyltrimethylammonium bromide (HTAB) and sodium stearate (SS), respectively, were added from 4 to 20 wt%, whereas the nonionic surfactant which is sorbitan monostearate (SM) was added from 1 to 5 wt%. The mechanical testing results exhibited that the addition of HTAB increased tensile strength and tensile modulus, while SS deteriorated mechanical properties, while SM increased impact strength and tensile extension of the biocomposites. Based on the mechanical properties results, optimum weight percentages of HTAB and SM were 12 wt% and 4 wt%, respectively. The scanning electron microscopic micrographs displayed that the amount of cellulose fillers pullout decreased with the addition of HTAB, followed by SM, but it increased with SS. Fourier transform infrared spectra, X-ray diffractometer patterns, thermogravimetric analysis results, and differential scanning calorimetry thermograms have confirmed the presence of physical interactions only with the addition of HTAB and SM. Based on the results, compatibilizing effect was found in HTAB, whereas SM has not showed compatibilizing effect but instead plasticizing effect. However, neither compatibilizing nor plasticizing effect was exhibited by SS.


2012 ◽  
Vol 729 ◽  
pp. 216-221 ◽  
Author(s):  
Hajnalka Hargitai ◽  
Tamás Ibriksz ◽  
János Stifter ◽  
Endre Andersen

In our experiments polyamide 6/high density polyethylene blends (25/75 wt%) were produced and maleic anhydride grafted polyethylene was used as chemical coupling agent. To get finer microstructure and enhance the mechanical properties the blends were compounded by different nanostructured reinforcements. Two kinds of nanosilicate, the layered structure montmorillonite and the needle like sepiolite were applied in different concentrations and their effect on the mechanical and melting properties were examined.


2013 ◽  
Vol 652-654 ◽  
pp. 15-24 ◽  
Author(s):  
Xia Ran Miao ◽  
Yuan Jiang Qi ◽  
Xiao Yun Li ◽  
Yu Zhu Wang ◽  
Xiao Long Li ◽  
...  

The high density polyethylene (HDPE) nanocomposites were prepared by melt mixing HDPE with multi-wall carbon nanotubes (MWCNTs). In this work, the morphological, nucleation, crystallization and mechanical properties of the HDPE nanocomposites were studied by scanning electron microscopy, different scanning calorimetry, small-angle X-ray scattering and tensile testing. It was found that the tensile strength and Young’s modulus is increased by 42.4% and 116.5% at 3.wt% MWCNT loading compared to the pure HDPE. According to SEM results combined with SAXS, well-defined nanohybird shish-kebab (NHSK) entities exist in the composites, and in the shish-kebab structures fibrillous carbon nanotubes (MWCNTs) act as shish while HDPE lamellae act as kebab. The crystallization behavior, probed by DSC, suggests that MWCNTs have strong nucleation ability and shear stress plays an important role in polymer crystallization process. The mechanical properties demonstrated that the formation of the Shish-kebab structures improved the interfacial adhesion and brought obvious mechanical enhancement for the HDPE/MWCNTs nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document