scholarly journals Analyses of Composite Structures Behaviour with Embedded Bragg Grating Sensors

2006 ◽  
Vol 514-516 ◽  
pp. 614-618
Author(s):  
Carlos A. Ramos ◽  
José Luís Esteves ◽  
Rui A. Silva ◽  
António Torres Marques

Structural health monitoring of composite structures may be accomplished by measuring strains with embedded optical fibre sensors. In this paper, we present the performance of Bragg grating sensors, which are embedded into a carbon composite laminate and them bonded to the structure in analyse. The paper will briefly discuss the results and compare them with a free fibre Bragg grating bonded in the surface of the carbon composite laminate, with existing electrical strain gauge installation and with a numerical analysis by the finite element method.

2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Yi Wang ◽  
Nai Xian Hou ◽  
Zhu Feng Yue

The experiments and finite element simulations of composite laminate with stitching are carried out. Firstly, the monotonous tensile experiments with and without stitching are conducted to investigate the influence of stitch reinforcement on the composite laminate. Secondly, the finite element method (FEM) is employed to simulate the tensile process of specimens, and the link element is introduced to simulate the stitching. The experiment results shows that the stitching has little influence on the damage load under monotonous tensile load, while there is a significant influence on the changing of strain. The FEM results are consistent with the experiment results, which means that the link element can be used to study the stitching of the composite laminate. The simulation results also show that the distributions of strain are changed obviously due to the existence of the stitching. Research results have a significant role on the design of the composite structures with and without stitching.


1995 ◽  
Vol 05 (03) ◽  
pp. 351-365 ◽  
Author(s):  
V. SHUTYAEV ◽  
O. TRUFANOV

This paper is concerned with the numerical analysis of the mathematical model for a semiconductor device with the use of the Boltzmann equation. A mixed initial-boundary value problem for nonstationary Boltzmann-Poisson system in the case of one spatial variable is considered. A numerical algorithm for solving this problem is constructed and justified. The algorithm is based on an iterative process and the finite element method. A numerical example is presented.


2021 ◽  
Vol 155 (4) ◽  
pp. 23-48
Author(s):  
Tomasz Błaszczak ◽  
Mariusz Magier

A numerical analysis over influence of kinetic energy projectile sabot structure on the armour depth penetration is presented in the paper. The analysis has identified an influence of sabot different materials into projectile combat performance, and some areas of sabot structure where its shape can be optimised. The finite element method in Solidworks Simulation environment was used in analysis. Due to it the dynamical loads of the sabot at the time of firing could be investi-gated. The influence of sabot different materials and projectile geometry modifications on the strength of penetrator sabot joining was studied. A pattern of dynamical loads for the penetrator sabot joining was simulated and visualised. For selected options of the structure the calculations were performed over the terminal ballistics. It allowed an identification of potential development trends for this brand of ammunition.


2015 ◽  
Vol 76 (2) ◽  
Author(s):  
Ali Arefnia ◽  
Khairul Anuar Kassim ◽  
Houman Sohaei ◽  
Kamarudin Ahmad ◽  
Ahmad Safuan A Rashid

 The failure mechanism of backfill material for retaining wall was studied by performing a numerical analysis using the finite element method. Kaolin is used as backfill material and retaining wall is constructed by Polymer Concrete. The laboratory data of an instrumented cantilever retaining wall are reexamined to confirm an experimental working hypothesis. The obtained laboratory data are the backfill settlement and horizontal displacement of the wall. The observed response demonstrates the backfill settlement and displacement of the retaining wall from the start to completion of loading. In conclusion, numerical modelling results based on computer programming by ABAQUS confirms the experimental results of the physical modelling.  


2012 ◽  
Vol 446-449 ◽  
pp. 3229-3232
Author(s):  
Chao Jiang Fu

The finite element modeling is established for reinforced concrete(RC) beam reinforced with fiber reinforced polymer (FRP) using the serial/parallel mixing theory. The mixture algorithm of serial/parallel rule is studied based on the finite element method. The results obtained from the finite element simulation are compared with the experimental data. The comparisons are made for load-deflection curves at mid-span. The numerical analysis results agree well with the experimental results. Numerical results indicate that the proposed procedure is validity.


1974 ◽  
Vol 41 (1) ◽  
pp. 269-272 ◽  
Author(s):  
E. M. Buturla ◽  
R. W. McLay

Results of a numerical analysis completed in conjunction with the analytical development of a previous work are presented. The problem is an optimization study involving the thermal deflections of two parallel circular disks. The capability of choosing a mesh refinement to arbitrarily reduce approximation errors is illustrated and numerical convergence of the optimization process is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document