The Properties of n-ZnO/p-SiC Heterojunctions and their Potential Applications for Devices

2006 ◽  
Vol 527-529 ◽  
pp. 1571-1574 ◽  
Author(s):  
Cole W. Litton ◽  
Ya.I. Alivov ◽  
D. Johnstone ◽  
Ümit Özgür ◽  
V. Avrutin ◽  
...  

Heteroepitaxial n-ZnO films have been grown on commercial p-type 6H-SiC substrates by plasma-assisted molecular-beam epitaxy, and n-ZnO/p-SiC heterojunction mesa structures have been fabricated and their photoresponse properties have been studied. Current-voltage characteristics of the structures had a very good rectifying diode-like behavior with a leakage current less than 2 x 10-4 A/cm2 at -10 V, a breakdown voltage greater than 20 V, a forward turn on voltage of ∼5 V, and a forward current of ∼2 A/cm2 at 8 V. Photosensitivity of the diodes, when illuminated from ZnO side, was studied at room temperature and photoresponsivity of as high as 0.045 A/W at -7.5 V reverse bias was observed for photon energies higher than 3.0 eV.

2013 ◽  
Vol 717 ◽  
pp. 113-116
Author(s):  
Sani Klinsanit ◽  
Itsara Srithanachai ◽  
Surada Ueamanapong ◽  
Sunya Khunkhao ◽  
Budsara Nararug ◽  
...  

The effect of soft X-ray irradiation to the Schottky diode properties was analyzed in this paper. The built-in voltage, leakage current, and work function of Schottky diode were investigated. The current-voltage characteristics of the Schottky diode are measured at room temperature. After irradiation at 70 keV for 55 seconds the forward current and leakage current are increase slightly. On the other hand, the built-in voltage is decrease from the initial value about 0.12 V. Consequently, this method can cause the Schottky diode has low power consumption. The results show that soft X-ray can improve the characteristics of Schottky diode.


1992 ◽  
Vol 281 ◽  
Author(s):  
C. Piskoti ◽  
B. Mykolajenko ◽  
M. Vaziri

ABSTRACTTo study the formation of ohmic contacts, several metals have been deposited on p-types ZnTe and ZnSe epitaxial layers. The metals were deposited on the layers either by simple evaporation or by electroplating. The current-voltage characteristics associated with each metal contact were measured. The preliminary results of these measurements indicate that electroplating is a better technique for making ohmic contact to these layers.


2020 ◽  
Vol 50 (2) ◽  
Author(s):  
Krzesimir Nowakowski-Szkudlarek ◽  
Grzegorz Muziol ◽  
Mikolaj Żak ◽  
Mateusz Hajdel ◽  
Marcin Siekacz ◽  
...  

We investigated the influence of the In0.17Ga0.83N:Mg contact layer grown by plasma assisted molecular beam epitaxy on the resistivity of p-type Ni/Au contacts. We demonstrate that the Schottky barrier width for p-type contact is less than 5 nm. We compare circular transmission line measurements with a p-n diode current-voltage characteristics and show that discrepancies between these two methods can occur if surface quality is deteriorated. It is found that the most efficient contacts to p-type material consist of In0.17Ga0.83N:Mg contact layer with Mg doping level as high as 2 × 1020 cm–3.


2017 ◽  
Vol 864 ◽  
pp. 116-120
Author(s):  
Yun Ki Kim ◽  
J.B. Ketterson

MnGeAs2 thin films were successfully deposited on GaAs(100) substrate. The films exhibited room-temperature ferromagnetism with TC ~ 330 K, based on both magnetization and resistance measurements at temperatures from 5 to 370 K. The coercive fields at 5 and 300 K were 2100 and 50 Oe. The anomalous Hall effect was observed, suggesting the existence of spin polarized carriers in MnGeAs2 thin films. The magnetoresistance (MR) measurements showed very small change (~ 0.1% at 5 K) in resistance at low temperature. The MR value at 5 K was smaller than that (~ 9% at 305 K) at room temperature (305 K). Type of majority carriers in the films was determined to be n-type by Hall measurement above the transition temperature. The effective carrier density was 1.8´1020 cm-3. The diode current-voltage characteristics were shown in a hetero-junction MnGeAs2 film on a conducting p-type GaAs substrate.


2000 ◽  
Vol 640 ◽  
Author(s):  
Q. Zhang ◽  
V. Madangarli ◽  
Y. Gao ◽  
T. S. Sudarshan

ABSTRACTForward and reverse current – voltage (I–V) characteristics of N and P-type Schottky diodes on 6H-SiC are compared in a temperature range of room temperature to 550K. While the room temperature I–V characteristics of the N-type Schottky diode after turn-on is more or less linear up to ∼ 100 A/cm2, the I–V characteristics of the P-type Schottky diode shows a non-linear behavior even after turn-on, indicating a variation in the on-state resistance with increase in forward current. For the first time it is shown that at high current densities (> 210 A/cm2) the forward voltage drop across P type Schottky diodes is lower than that across N type Schottky diodes on 6H-SiC. High temperature measurements indicate that while the on-state resistance of N type Schottky diodes increases with increase in temperature, the on-state resistance of P type Schottky diodes decreases with increase in temperature until a certain temperature. While the N-type diodes seem to have soft breakdown characteristics, the P-type diodes exhibit more or less abrupt breakdown characteristics.


1995 ◽  
Vol 395 ◽  
Author(s):  
S. Sinharoy ◽  
A. K. Agarwal ◽  
G. Augustine ◽  
L. B. Rowland ◽  
R. L. Messham ◽  
...  

ABSTRACTThe growth of undoped and doped GaN and AlGaN films on off-axis 6H SiC substrates was investigated using plasma-assisted molecular beam epitaxy (MBE). Smooth and crack-free GaN and AlGaN films were obtained; the best results occurred at the highest growth temperature studied (800°C) and with a 40 to 50 nm A1N buffer layer grown at the same temperature. Carrier concentrations of up to n = 4 × 1020 cm−3 were accomplished with silicon, with a 40 to 50% activation rate as determined by secondary ion mass spectrometry (SIMS). Unintentionally doped AlxGa,.xN (x≈0.1) was n-type with a carrier concentration of 7 × 1018 cm−3. N-type AlGaN (x≈0.1)/p-type 6H SiC (0001) heterostructures showed excellent junction characteristics with leakage currents of less than 0.1 nA at 5 V reverse bias at room temperature and 0.5 nA at 200°C operating temperature.


2012 ◽  
Vol 1396 ◽  
Author(s):  
Yuichi Minoura ◽  
Naoya Okamoto ◽  
Masahito Kanamura ◽  
Tadahiro Imada ◽  
Toshihiro Ohki ◽  
...  

ABSTRACTIn this study, we propose copper oxide (CuOx) edge-termination for GaN-based Schottky barrier diodes (SBDs) with low turn-on voltage. CuOx fabricated by thermal oxidization of sputtered Cu film at 275°C consisted mainly of Cu2O which is known as a p-type semiconductor. We applied CuOx edge-termination to GaN SBDs with tantalum (Ta) Schottky electrode which has low work function of 4.25 eV. The experimental results of current-voltage characteristics insisted that CuOx edge-termination structure was effective to increase breakdown voltage of GaN SBDs with keeping low turn-on voltage of 0.29 V at 10 A/cm2.


Sign in / Sign up

Export Citation Format

Share Document