Current Analysis of Ion Implanted p+/n 4H-SiC Junctions: Post-Implantation Annealing in Ar Ambient

2006 ◽  
Vol 527-529 ◽  
pp. 815-818 ◽  
Author(s):  
Roberta Nipoti ◽  
Fabio Bergamini ◽  
Francesco Moscatelli ◽  
Antonella Poggi ◽  
Mariaconcetta Canino ◽  
...  

An n-type 8° off-axis <0001> 4H-SiC epitaxial wafer was processed. The n-type epilayer had doping and thickness of, respectively, ~3 × 1015 cm-3 and ~5 μm. p+/n diodes with not terminated junctions were constructed by a selective area implantation process of 9.2 × 1014 cm-2 Al+ ions at 400°C. The diodes had areas in the range 2×10-4 -1×10-3 cm2. The Al depth profile was 6×1019 cm-3 high and 164 nm thick. The post implantation annealing process was done in a high purity Ar ambient at 1600°C for 30 min. The diode current-voltage characteristics were measured in the temperature range 25-290°C. Statistics of 50-100 measurements per device type were done. The fraction of diodes that could be modeled as abrupt junctions within the frame of the Shockley theory decreased with increasing area value, but was always > 75%. The ideality factor was > 2 only at temperatures > 200°C and bias values < 1 V. The leakage current was extremely weak and remained of the order of 10-9 Acm-2 at 70°C and 500 V reverse bias. 4% of the diodes reached the theoretical voltage breakdown that was 1030 V. The surface roughness of un-implanted and implanted regions after diode processing was, respectively, 2 nm and 12 nm.

2009 ◽  
Vol 615-617 ◽  
pp. 687-690
Author(s):  
Francesco Moscatelli ◽  
Roberta Nipoti ◽  
Antonella Poggi ◽  
Sandro Solmi ◽  
Stefano Cristiani ◽  
...  

Phosphorous implanted n+/p diodes have been included in the masks for manufacturing n-MOSFET devices and processed in the same way of source/drain regions. The diode junctions were made by a P+ implantation at 300°C and a post implantation annealing at 1300°C. The diode emitter area was protected by 0.6 m thick CVD oxide during the processing of the MOSFET gate oxide. Three gate oxide processes were taken into account: two of them include a N implantation before a wet oxidation, while the third one was a standard oxidation. Considering the effect on the n+/p diodes, the main difference among the processes were the wet thermal oxidation time that ranged between 180 and 480 min at a temperature of 1100°C. The diode current-voltage characteristics show similar forward but different reverse curves in the temperature range of 25-290°C. Differences in reverse bias voltage as a function of the measurement temperature have been analyzed and are related to the different gate oxidation time. A correlation between the shortest oxidation time and the lower leakage current is presented.


2019 ◽  
Vol 18 (03n04) ◽  
pp. 1940090
Author(s):  
M. V. Rudenko ◽  
P. A. Kholov ◽  
N. V. Gaponenko ◽  
N. V. Mukhin ◽  
V. A. Ivanov ◽  
...  

SrTiO3 and SrTiO3:Nd films of 110[Formula: see text]nm and 210[Formula: see text]nm thickness were fabricated using the sol–gel technology on silicon. Their current–voltage characteristics were investigated with and without illumination. The film structures are photosensitive and exhibit the hysteresis on the forward and reverse bias with loop broadening at the reverse part.


2010 ◽  
Vol 7 (6) ◽  
pp. 1627-1629 ◽  
Author(s):  
A. V. Vishnyakov ◽  
V. S. Varavin ◽  
M. O. Garifullin ◽  
A. V. Predein ◽  
V. G. Remesnik ◽  
...  

2014 ◽  
Vol 778-780 ◽  
pp. 657-660 ◽  
Author(s):  
Ulrike Grossner ◽  
Francesco Moscatelli ◽  
Roberta Nipoti

Two families of Al+implanted vertical p+in diodes that have been processed all by identical steps except the post implantation annealing one have been characterized with current voltage measurements from -100 to +5V at different temperatures. Analysis of the static forward current voltage characteristics shows two different ideality factor regions, which are distinct for each family. The reverse current voltage characteristics reveals corresponding two different activation energies. These are assumed to be correlated to the Z1/2defect for the one case and another one with an activation energy of 0.25eV.


2013 ◽  
Vol 740-742 ◽  
pp. 1010-1013 ◽  
Author(s):  
Alexey V. Afanasyev ◽  
Boris V. Ivanov ◽  
Vladimir A. Ilyin ◽  
Alexey F. Kardo-Sysoev ◽  
Maria A. Kuznetsova ◽  
...  

This paper presents the results of research and development of two types diode structures based on wide bandgap 4H-SiC: drift step recovery diodes (DSRDs) and field emission diodes (FED). Diodes’ structure and manufacturing methods are reviewed. Diode’s characteristics were obtained (static current-voltage characteristics and capacitor-voltage characteristic, switching properties’ characteristics for DSRDs). Field emission 4H-SiC structures illustrated high (≥102 А/сm2) current densities at electric field intensity of approximately 10V/um. 4H-SiC DSRDs in the generator structure with a single oscillating contour allowed to form sub nanosecond impulses at a load 50 Ohm and 1,5-2kV amplitude for a single diode (current density at V=2kV J= 4•103 А/сm2),what is significantly higher than similar DSRD’s parameters obtained for silicon.


2006 ◽  
Vol 527-529 ◽  
pp. 1571-1574 ◽  
Author(s):  
Cole W. Litton ◽  
Ya.I. Alivov ◽  
D. Johnstone ◽  
Ümit Özgür ◽  
V. Avrutin ◽  
...  

Heteroepitaxial n-ZnO films have been grown on commercial p-type 6H-SiC substrates by plasma-assisted molecular-beam epitaxy, and n-ZnO/p-SiC heterojunction mesa structures have been fabricated and their photoresponse properties have been studied. Current-voltage characteristics of the structures had a very good rectifying diode-like behavior with a leakage current less than 2 x 10-4 A/cm2 at -10 V, a breakdown voltage greater than 20 V, a forward turn on voltage of ∼5 V, and a forward current of ∼2 A/cm2 at 8 V. Photosensitivity of the diodes, when illuminated from ZnO side, was studied at room temperature and photoresponsivity of as high as 0.045 A/W at -7.5 V reverse bias was observed for photon energies higher than 3.0 eV.


2020 ◽  
Vol 50 (2) ◽  
Author(s):  
Krzesimir Nowakowski-Szkudlarek ◽  
Grzegorz Muziol ◽  
Mikolaj Żak ◽  
Mateusz Hajdel ◽  
Marcin Siekacz ◽  
...  

We investigated the influence of the In0.17Ga0.83N:Mg contact layer grown by plasma assisted molecular beam epitaxy on the resistivity of p-type Ni/Au contacts. We demonstrate that the Schottky barrier width for p-type contact is less than 5 nm. We compare circular transmission line measurements with a p-n diode current-voltage characteristics and show that discrepancies between these two methods can occur if surface quality is deteriorated. It is found that the most efficient contacts to p-type material consist of In0.17Ga0.83N:Mg contact layer with Mg doping level as high as 2 × 1020 cm–3.


Sign in / Sign up

Export Citation Format

Share Document