Innovative Annealing Techniques for the Production of Advanced High Strength Steels

2007 ◽  
Vol 539-543 ◽  
pp. 4405-4410 ◽  
Author(s):  
C. Elgoyhen ◽  
Annick De Paepe ◽  
A. Lucas ◽  
Y. Hardy

Nowadays, it is not evident to produce in a robust way cold rolled and annealed/galvanised high strength steels based on lean chemistries and with consistent mechanical properties over the coil length. The reasons behind this are first the low cooling rates available on the lines which require the use of a large amount of alloying elements for avoiding the unwanted phases such as the pearlite and secondly the difficult control of soaking temperature and time in a narrow range, resulting in a variable austenite content at the end of the soaking and then in a dispersion of the obtained mechanical properties. By considering high speed cooling technologies on a compact annealing/galvanizing line, this production becomes possible. After rapid heating by means of induction heating and short holding at a high soaking temperature, the strip is cooled down to an intermediate temperature, where it is held for a short period for obtaining a stable ferrite-austenite structure. Then it is rapidly cooled by means of cold water (Twice) in the case of a continuous annealing line or by the zinc quench process in the case of the galvanizing line. These rapid cooling equipments allow reaching high tensile strength levels with a significant reduction of the addition of expensive elements (Mn, Cr and Mo).

Author(s):  
Francys Barrado ◽  
Tihe Zhou ◽  
Chad Cathcart ◽  
Peter Badgley ◽  
Sarah Zhang ◽  
...  

By using hydrogen quench continuous annealing technology, Stelco Inc. has developed a suite of Advanced High Strength Steel (AHSS) grades with tensile strength greater than 1000MPa to meet standard automotive specifications and for unique customer requirements. These grades were optimized by correlating chemical composition and processing parameters with microstructures and mechanical properties. Dual-Phase 980 (Stelco trademarked STELMAXTM 980DP), Multi-Phase 1180 (STELMAXTM 1180MP), Martensitic Steel 1300 (STELMAXTM 1300M) and 1500 (STELMAXTM 1500M) products met strength and formability requirements with excellent flatness and surface quality. Hydrogen quench continuous annealing technology not only ensures all developed AHSS grades have consistent mechanical properties across the entire strip length (from strip head to tail) and width (from edge to edge), but also produces high product yield compared with other continuous annealing processes.


2016 ◽  
Vol 879 ◽  
pp. 1933-1938 ◽  
Author(s):  
Richard G. Thiessen ◽  
Georg Paul ◽  
Roland Sebald

Third-Generation advanced high strength steels are being developed with the goal of reducing the body-in-white weight while simultaneously increasing passenger safety. This requires not only the expected increase in strength and elongation, but also improved local formability. Optimizing elongation and formability were often contradictory goals in dual-phase steel developments. Recent results have shown that so-called "quench and partitioning" (Q&P) concepts can satisfy both requirements [1]. Many Q&P-concepts have been studied at thyssenkrupp Steel Europe. Thorough investigation of the microstructure has revealed relationships between features such as the amount, morphology and chemical stability of the retained austenite and the obtained mechanical properties. An evaluation of the lattice strain by means of electron-back-scattering-diffraction has also yielded a correlation to the obtained formability. The aim of this work is to present the interconnection between these microstructural features and propose hypotheses for the explanation of how these features influence the macroscopically observed properties.


2021 ◽  
Author(s):  
Muhammad Sohaib Khan

Microstructural characterization and mechanical properties of spot welded dissimilar advanced high strength steels


2007 ◽  
Vol 539-543 ◽  
pp. 4369-4374 ◽  
Author(s):  
Toshiaki Urabe ◽  
Fusato Kitano ◽  
Takeshi Fujita ◽  
Yuji Yamasaki ◽  
Yoshihiro Hosoya

New type of IF cold-rolled high strength steels (HSSs) with the strength level of 390 and 440MPa have been developed under the chemistry of the extra-low carbon steel containing around 60ppm C with an intentional addition of niobium by hybridizing the precipitation hardening with niobium carbides and the supplemental solid-solution hardening. In this steel, Precipitation Free Zone (PFZ) nearby recrystallized grain boundaries forms during continuous annealing. This structure leads to unique mechanical properties such as lower yielding and superior anti-secondary-work embrittlement under fine grain structure strictly required for the exposed panels in Body-in-White. Principles of the unique mechanical properties of the steel are introduced related with the formation of PFZ during annealing, and the results of further approach to improve them as the state-of-the-art product, which is widely used for the exposed panels in Body in White, are introduced in the paper.


2014 ◽  
Vol 39 (9) ◽  
pp. 4647-4656 ◽  
Author(s):  
T. Depover ◽  
D. Pérez Escobar ◽  
E. Wallaert ◽  
Z. Zermout ◽  
K. Verbeken

2010 ◽  
Vol 638-642 ◽  
pp. 3254-3259 ◽  
Author(s):  
M.H.E. Janssen ◽  
M.J.M. Hermans ◽  
M. Janssen ◽  
I.M. Richardson

Advance high strength steels (AHSS), like dual phase (DP) and transformation induced plasticity (TRIP) steels, offer high strength and toughness combined with excellent uniform elongation. However, the higher alloying content of these steels limit their weldability and the thermal cycle of welding processes destroys the carefully designed microstructure. This will result in inferior mechanical properties of the joint. Therefore, joining processes with a low heat input, like brazing, are recommendable. Data regarding mechanical properties of joints in DP and TRIP steel is limited, especially for brazed joints. Results with respect to the fatigue lifetime of laser brazed butt joints are presented. In DP and TRIP steel, crack initiation takes place at the braze toe. In DP steel the crack propagates through the base metal. In TRIP steel, however, the crack may either follow the interface or may continue through the steel depending on the maximum stress level. The different failure mechanisms are explained on the basis of process conditions, the microstructure and the stress state.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1699
Author(s):  
Marco Thomä ◽  
Guntram Wagner

The manufacturing of advanced high-strength steels with enhanced ductility is a persistent aim of research. The ability of a material to absorb high loads while showing a high deformation behavior is a major task for many industrial fields like the mobility sector. Therefore, the material properties of advanced high-strength steels are one of the most important impact factors on the resulting cyclic fatigue behavior. To adjust advanced material properties, resulting in high tensile strengths as well as an enhanced ductility, the heat treatment process of quenching and partitioning (QP) was developed. The quenching takes place in a field between martensite start and martensite finish temperature and the subsequent partitioning is executed at slightly elevated temperatures. Regarding the sparsely investigated field of fatigue research on quenched and partitioned steels, the present work investigates the influence of a QP heat treatment on the resulting microstructure by light and scanning electron microscopy as well as on the mechanical properties such as tensile strength and resistance against fatigue regarding two different heat treatment conditions (QP1, QP2) in comparison to the cold-rolled base material of 42SiCr steel. Therefore, the microscopic analysis proved the presence of a characteristic quenched and partitioned microstructure consisting of a martensitic matrix and partial areas of retained austenite, whereas carbides were also present. Differences in the amount of retained austenite could be observed by using X-ray diffraction (XRD) for the different QP routes, which influence the mechanical properties resulting in higher tensile strength of about 2000 MPa for QP1 compared to about 1600 MPa for QP2. Furthermore, the transition for the fatigue limit was approximated by using stepwise load increase tests (LIT) and afterwards verified by constant amplitude tests (CAT) in accordance with the staircase method, whereas the QP 1 condition reached the highest fatigue strength of 900 MPa. Subsequent light and scanning electron microscopy of selected fractured surfaces and runouts showed a different behavior regarding the size of the fatigue fracture area and also differences in the microstructure of these runouts.


Sign in / Sign up

Export Citation Format

Share Document