Fatigue Performance of Laser Brazes in Advanced High Strength Steels

2010 ◽  
Vol 638-642 ◽  
pp. 3254-3259 ◽  
Author(s):  
M.H.E. Janssen ◽  
M.J.M. Hermans ◽  
M. Janssen ◽  
I.M. Richardson

Advance high strength steels (AHSS), like dual phase (DP) and transformation induced plasticity (TRIP) steels, offer high strength and toughness combined with excellent uniform elongation. However, the higher alloying content of these steels limit their weldability and the thermal cycle of welding processes destroys the carefully designed microstructure. This will result in inferior mechanical properties of the joint. Therefore, joining processes with a low heat input, like brazing, are recommendable. Data regarding mechanical properties of joints in DP and TRIP steel is limited, especially for brazed joints. Results with respect to the fatigue lifetime of laser brazed butt joints are presented. In DP and TRIP steel, crack initiation takes place at the braze toe. In DP steel the crack propagates through the base metal. In TRIP steel, however, the crack may either follow the interface or may continue through the steel depending on the maximum stress level. The different failure mechanisms are explained on the basis of process conditions, the microstructure and the stress state.

2021 ◽  
Vol 11 (12) ◽  
pp. 5728
Author(s):  
HyeonJeong You ◽  
Minjung Kang ◽  
Sung Yi ◽  
Soongkeun Hyun ◽  
Cheolhee Kim

High-strength steels are being increasingly employed in the automotive industry, requiring efficient welding processes. This study analyzed the materials and mechanical properties of high-strength automotive steels with strengths ranging from 590 MPa to 1500 MPa, subjected to friction stir welding (FSW), which is a solid-phase welding process. The high-strength steels were hardened by a high fraction of martensite, and the welds were composed of a recrystallized zone (RZ), a partially recrystallized zone (PRZ), a tempered zone (TZ), and an unaffected base metal (BM). The RZ exhibited a higher hardness than the BM and was fully martensitic when the BM strength was 980 MPa or higher. When the BM strength was 780 MPa or higher, the PRZ and TZ softened owing to tempered martensitic formation and were the fracture locations in the tensile test, whereas BM fracture occurred in the tensile test of the 590 MPa steel weld. The joint strength, determined by the hardness and width of the softened zone, increased and then saturated with an increase in the BM strength. From the results, we can conclude that the thermal history and size of the PRZ and TZ should be controlled to enhance the joint strength of automotive steels.


2016 ◽  
Vol 879 ◽  
pp. 1933-1938 ◽  
Author(s):  
Richard G. Thiessen ◽  
Georg Paul ◽  
Roland Sebald

Third-Generation advanced high strength steels are being developed with the goal of reducing the body-in-white weight while simultaneously increasing passenger safety. This requires not only the expected increase in strength and elongation, but also improved local formability. Optimizing elongation and formability were often contradictory goals in dual-phase steel developments. Recent results have shown that so-called "quench and partitioning" (Q&P) concepts can satisfy both requirements [1]. Many Q&P-concepts have been studied at thyssenkrupp Steel Europe. Thorough investigation of the microstructure has revealed relationships between features such as the amount, morphology and chemical stability of the retained austenite and the obtained mechanical properties. An evaluation of the lattice strain by means of electron-back-scattering-diffraction has also yielded a correlation to the obtained formability. The aim of this work is to present the interconnection between these microstructural features and propose hypotheses for the explanation of how these features influence the macroscopically observed properties.


2021 ◽  
Author(s):  
Muhammad Sohaib Khan

Microstructural characterization and mechanical properties of spot welded dissimilar advanced high strength steels


2016 ◽  
Vol 879 ◽  
pp. 867-872 ◽  
Author(s):  
M.C. Taboada ◽  
I. Gutiérrez ◽  
D. Jorge-Badiola ◽  
S.M.C. van Bohemen ◽  
F. Hisker ◽  
...  

New trends focused on achieving higher performance steels has led to a so-called 3rd Generation Advanced High Strength Steels (AHSS), in which the typical polygonal ferrite found in TRIP steels as a matrix phase is replaced by harder phases as Carbide-Free Bainite (CFB) and/or (tempered) martensite. Besides, large volume fractions of retained austenite (R.A.) with adequate stability are aimed for to improve the formability of the steels. Si containing steels are regarded as the most suitable to retard cementite formation and consequently reach high volume fractions of RA. In this work, CFB annealing schedules were applied to dilatometer samples of Fe-0.22C-2.0Mn-1.3Si. The overaging temperature TB was varied between 390 oC and 480 oC, and other processing variables investigated were the austenitizing temperature Taus, and the overaging holding time tB. The annealed samples analyzed with LOM, FEG-SEM, EBSD and X-ray diffraction techniques show that markedly different complex microstructures made up of bainite, ferrite, MA phase and retained austenite (R.A) are accomplished depending on the specific thermal cycle. These results are described in detail and discussed in relation to the dilatometry measurements.


2020 ◽  
Vol 2 (11) ◽  
Author(s):  
Juhani Laitila ◽  
Lassi Keränen ◽  
Jari Larkiola

AbstractIn this study, we present the effect of enhanced cooling on the mechanical properties of a high-strength low-alloy steel (having a yield strength of 700 MPa) following a single-pass weld process. The properties evaluated in this study include uniform elongation, impact toughness, yield, tensile and fatigue strengths alongside the cooling time of the weld. With the steel used in this study, the enhanced cooling resulted in a weld joint characterized with excellent cross-weld uniform elongation, yield and fatigue strength. The intensified cooling reduced the time it takes for the weld to reach 100 °C by around 190 s. Not only the fusion line of the weld was less pronounced, but also the grain size of the CGHAZ was greatly refined as a result of the enhanced cooling. The results indicate that combining external cooling to the welding processes can be beneficial for the studied high-strength steel.


2010 ◽  
Vol 89-91 ◽  
pp. 214-219 ◽  
Author(s):  
David Gutiérrez ◽  
A. Lara ◽  
Daniel Casellas ◽  
Jose Manuel Prado

The Forming Limit Diagrams (FLD) are widely used in the formability analysis of sheet metal to determine the maximum strain, which gives the Forming Limit Curve (FLC). It is well known that these curves depend on the strain path during forming and hence on the test method used to calculate them. In this paper, different stretching tests such as the Nakajima and the Marciniak tests were performed, with different sample geometries to obtain points in different areas of the FLD. An optical analysis system was used, which allows following the strain path during the test. The increasing use of advanced high-strength steels (AHSS) has created an interest in determining the mechanical properties of these materials. In this work, FLCs for a TRIP steel were determined using Nakajima and Marciniak tests, which revealed different strain paths depending on the type of test. Determination of the FLCs was carried out following the mathematical calculations indicated in the ISO 12004 standard and was also compared with an alternative mathematical method, which showed different FLCs. Finally, the tests were verified by comparing the strain paths of the Nakajima and Marciniak tests with a well-known mild steel.


2013 ◽  
Vol 773-774 ◽  
pp. 325-335 ◽  
Author(s):  
Debanshu Bhattacharya

Two major drivers for the use of advanced steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the automobile manufacturers to use Advanced High Strength Steels (AHSS) to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake-hardenability. Another class of AHSS is the complex-phase or multi-phase steel which has a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio. Transformation Induced Plasticity (TRIP) steels is another class of AHSS steels finding interest among the U.S. automakers. These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. A relatively new class of AHSS is the Quenching and Partitioning (Q&P) steels. These steels seem to offer higher ductility than the dual-phase steels of similar strengths or similar ductility as the TRIP steels at higher strengths. Finally, martensitic steels with very high strengths are also in use for certain parts. The most recent initiative in the area of AHSS is the so-called 3rd Generation AHSS. These steels are designed to fill the region between the dual-phase/TRIP and the Twin Induced Plasticity (TWIP) steels with very high ductility at strength levels comparable to the conventional AHSS. Enhanced Q&P steels may be one method to achieve this target. Other ideas include TRIP assisted dual phase steels, high manganese steels and higher carbon TRIP type steels. In this paper, some of the above families of advanced high strength steels for the automotive industry will be discussed with particular emphasis on the role of niobium.


2020 ◽  
pp. 73-79
Author(s):  
Lechosław Tuz

The use of technologically advanced structural materials entails the necessity of adjusting typical welding processes to special requirements resulting from the limited weldability of certain material groups. Difficulties obtaining high-quality joints may be the consequence of deteriorated mechanical properties and structural changes in materials (beyond requirements of related standards). One of the aforementioned materials is steel characterised by a guaranteed yield point of 1300 MPa, where high strength is obtained through the addition of slight amounts of carbide-forming elements and the application of complex heat treatment processes. A heat input during welding may worsen the aforesaid properties not only in the weld but also in the adjacent material. The tests discussed in the article revealed that the crucial area was that heated below a temperature of 600°C, where the hardness of the material decreased from approximately 520 HV to 330 HV.


2016 ◽  
Vol 2016 (7) ◽  
pp. 32-36
Author(s):  
M. Fiedler ◽  
◽  
A. Plozner ◽  
B. Rutzinger ◽  
W. Scherleitner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document