Deposition and Characterization of D-Gun Sprayed WC-Co Coating with Self-Lubricating Property

2007 ◽  
Vol 544-545 ◽  
pp. 215-218
Author(s):  
Hao Du ◽  
Chao Sun ◽  
Jun Gong ◽  
Soo Wohn Lee

A WC-Co coating with self-lubricating property was deposited by detonation gun (D-gun) process, using a WC-Co powder doped with a MoS2-Ni powder, under a proper spray condition. It is proved that the MoS2 composition was kept in the resulting coating by SEM, XRD and EPMA. Evaluation on sliding wear property indicates that the MoS2 composition plays an important role in lowering both coefficient of friction and wear rate for the resulting coating, which is confirmed by observations on wear track. It suggests that the deposition of WC-Co coating with self-lubricating property by D-gun spray is feasible by controlling lubricant powder and spray conditions, which can exhibit higher sliding wear resistance.

2020 ◽  
Vol 1001 ◽  
pp. 169-174
Author(s):  
Xu Guo Huai ◽  
Xiao Wei Fan

The friction and wear experiment employed M-2000 friction and wear tester which friction pair made up of Q235//GCr15 steel, and lubricating oil which contains 3% new N-B-Mo ceramic anti-wear agent was adopted as the medium. The effect of content of new ceramic anti-wear agent on friction and wear property was investigated by using X-Ray diffraction (XRD), optical microscope (OM), et al, and the mechanism of ceramic anti-wear agent was also analyzed. The results showed that in the range of 50-300N load, the friction coefficient is basically related to the size of the load, and the greater the load, the greater the coefficient of friction, the size of the wear rate is not simply increased as the load increases. The wear rate was lowest when the load was 200N. Under this load, the new N-B-Mo ceramic anti-wear agent was generated BN phase which has self-lubricating property at worn surface, reduce the friction coefficient of Q235//GCr15 friction pair and the wear rate of Q235 steel, plays an anti-friction and anti-wear role.


2007 ◽  
Vol 124-126 ◽  
pp. 1573-1576
Author(s):  
Jeong Keun Lee

The tribological behavior of TiC-based metal matrix composites was investigated via measuring counterpart weight. The composites were prepared using powder metallurgy technique. Wear of counterpart by the composites varying from 35 to 45 % by volume Titanium carbide were observed over a load ranges of 9.81 to 49.05 N and sliding velocities of 2.0, 2.2, 2.4, 2.6, 2.8 and 3.0 m/sec. Detailed wear track micro-graphy was done to verify the effect of sliding condition on wear mechanism. Observations indicate that wear rate of counterpart increases with the increase in load and the sliding velocity and discontinuous wear rate change occurs at a certain load.


2005 ◽  
Vol 167 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Rakesh Kaul ◽  
P. Ganesh ◽  
Pragya Tiwari ◽  
R.V. Nandedkar ◽  
A.K. Nath

1988 ◽  
Vol 140 ◽  
Author(s):  
K.A. Koshkarian ◽  
W.M. Kriven

AbstractComposite ceramic coatings of alumina (A1203) containing some molybdenum disulfide (MoS2) were electro-codeposited on to Al metal substrates by a combination of anodic sparks deposition of A1203 and electrophoresis of MoS2. The microstructures were characterized by XRD, XPS, SEM, EDS, SNMS,TEM, SAD and relative wear resistance measurements. The coatings consisted mostly ofa-A1203 with some γ and βpresent as well. The coatings were porous and microcracked. SEM showed them to consist of circular “splats” which had rapidly crystallized from the molten state in areas ofdielectric breakdown in the coating. In the TEM the microstructure was seento contain “sets” of parallel, elongated grains having a single crystallographic orientation. The grains were separated by dislocated, low angle grain boundaries or microcracks. The sets intersected at irregularly curved interfaces and were mechanically interlocked. Quantitative SNMS indicated that up to 26 wt% MoS2 was incorporated in coatings fabricated from 5g\1 solutions. SEM\EDS as well as TEM\SAD\EDS identified 1-3μm particles of MoS2 incorporated into the 5g\1 solution derived coatings. These coatings exhibited a 50% lower wear rate than pure alumina coatings deposited under the same conditions.


1990 ◽  
Vol 5 (11) ◽  
pp. 2524-2530 ◽  
Author(s):  
J-P. Hirvonen ◽  
R. Lappalainen ◽  
J. Koskinen ◽  
A. Anttila ◽  
T. R. Jervis ◽  
...  

Using an are-discharge method, we deposited a diamond-like carbon film 600 nm thick on hardened steel. Characterization of the film was carried out with Raman spectroscopy. In dry sliding wear and friction tests, with a hardened steel pin as a counterpart, we obtained a friction coefficient between 10000 and 20000 cycles, with the maximum value of 0.18. The value decreased to 0.12 after about 100000 cycles. We obtained a wear coefficient of 7 × 10−17 m3/mN. A transfer layer formed on the pin during sliding and probably had the dominating effect on the tribological behavior. We observed in nanoindentation measurements that the film softened in a wear track during the first 20000 cycles. Although fracture pits on the wear track occurred, fracture is not the dominant failure mechanism of these films. Degradation of good tribological properties was caused mainly by partial wear-through of the film after 370000 cycles and by a subsequent redeposition of the transfer film on the wear track during prolonged sliding.


2017 ◽  
Vol 30 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Ye Zhu ◽  
Yingshuang Shang ◽  
Haibo Zhang ◽  
Lianjun Ding ◽  
Yunping Zhao ◽  
...  

Poly(ether sulfone) (PES) with high coefficient of friction (COF) and wear rate needs treatment to enhance its tribological property in engineering plastic area. Here, the low surface energy of perfluorocarbon chains terminated poly (ether sulfone) (PES-F) had been used to improve the tribological property of such self-lubricating materials. In this research, the performance enhancement due to the existence of perfluorocarbon group on the material surface was discussed on improvement of anti-friction and wear resistance. On the premise of mechanical strength guarantee, the variation regularity of COF and volume wear rate of PES-F were quantitatively analyzed through the pin-on-disc wear test apparatus, combined with X-ray photoelectron spectroscopy analysis. It was found that PES-F exhibited the best tribological property during the initial phases of friction test, attributing to the highest content of F on the material surface. Observation of PES-F worn surface and wear debris revealed that the COF and wear rate of modified PES were decreased not only due to the effect of perfluorocarbon group but also by the change of worn surface morphology, both of which were the main reasons for anti-friction and anti-wear property enhancement.


Author(s):  
Akshay Shinde

Abstract: To improve the wear resistance of the hybrid powder coating, TiO2 nanoparticles was hot mixed to form a homogenous mixture with the powder in the range varying wt. dry sliding wear test conducted to determine the wear resistance. The experiments were design according to Taguchi L9 array to find the optimum nanoparticles content required to minimize the wear rate of the coating. ANOVA was used to determine the effect of the parameters on wear rate. It showed that reinforcement has the maximum contribution on the wear rate of the coating as compared to load and frequency. From the graph of means optimum parametric values was obtained at 2 % wt of reinforcement, 2 N load and 2 Hz frequency. The wear rate decrease with the increase in reinforcement. Keywords: Taguchi Method, Tribometer, Hybrid powder, TiO2, Wear Rate.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1805
Author(s):  
Yu ◽  
Zhang ◽  
Tang ◽  
Gao

(1) In order to improve the properties of antifriction and wear resistance of polyimide (PI) composite under high temperature conditions, (2) 3-Aminopropyltriethoxysilane (APTES) and Lanthanum (La) salt modifications were employed to manufacture poly-p-phenylenebenzobisoxazole (PBO)/PI composites with different interface properties. The representative ambient temperatures of 130 and 260 °C were chosen to study the friction and wear behavior of composites with different interface properties. (3) Results revealed that while both modification methods can improve the chemical activity of the surface of PBO fibers, the La salt modification is more effective. The friction coefficient of all composites decreases with the increase of sliding velocity and load at two temperatures, and the specific wear rate is increases. Contrary to the situation in the 130 °C environment, the wear resistance of the unmodified composite in the 260 °C environment is greatly affected by the sliding velocity and load, while the modified composites are less affected. Under the same test parameters, the PBO–La/PI composite has the lowest specific wear rate and friction coefficient, and (4) La salt modification is a more effective approach to improve the properties of antifriction and wear resistance of PI composite than APTES modification in high ambient temperatures.


2020 ◽  
Vol 10 (20) ◽  
pp. 7363
Author(s):  
Lei Xu ◽  
Erkuo Yang ◽  
Yasong Wang ◽  
Changyun Li ◽  
Zhiru Chen ◽  
...  

Ultra high-pressure sintering (UHPS) was used to prepare AA6061/SiCp composites with different contents and the effect of sintering temperatures on microstructure and mechanical properties was investigated in this study. The results showed that a uniform distribution of nano-SiC particles (N-SiCp) is obtained by the UHPS method. With the increase in N-SiCp contents, the higher hardness and better wear resistance could be inspected. The interfacial reactions and Al4C3 phase appeared above 550 °C. The relative density of composites first increased and then decreased; with the temperature raising it reached 99.58% at 600 °C. The hardness and wear property showed the same trend with the hardness reaching 52 HRA and wear rate being 1.0 × 10−6 g/m at 600 °C. Besides, the wear mechanism of the composites is mainly composed of abrasive wear and adhesive wear.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Parveen Kumar ◽  
M. F. Wani

Friction and wear properties of hypereutectic Al–25Si alloy were studied under dry and lubricated sliding conditions. Hypereutectic Al–25Si alloys were prepared by rapid solidification process (RSP) under the T6 condition. Experimental studies were conducted using a ball on disk type tribometer. The effect of the sliding distance and normal load on the friction and wear were investigated. The coefficient of friction (COF) remained stable with an increase in the sliding distance (250–1500 m) and decreased with an increase in the normal load (10–50 N), whereas the wear rate decreased with an increase in the sliding distance, and increased with the increase in the normal load up to 40 N and then attained a steady-state value under dry and lubricated sliding conditions. The improvements in COF and wear rate were mainly attributed to the morphology, size, and distribution of hypereutectic Si particles due to its fabrication process. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical microscopy, and three-dimensional (3D)-surface profilometer were used for characterization of the wear tracks. The dominant wear mechanisms for a hypereutectic Al–25Si alloy were adhesive wear, abrasive wear, and plastic deformation.


Sign in / Sign up

Export Citation Format

Share Document