Microstructure and Mechanical Properties of New Particle-Disperse-Reinforced Mg Composite Mg- 6Al- 3B2O3- 1NaCl- 1CaCl2

2007 ◽  
Vol 546-549 ◽  
pp. 503-507
Author(s):  
Le Ping Bu ◽  
Shunsuke Tanaka ◽  
Masayuki Tsushida ◽  
Shinji Ando ◽  
Hideki Tonda

In the present study, the conventional process of Compo-casting was carried and the microstructural and mechanical propertied were then investigated. The matrix alloy used was Mg- 6Al, and B2O3 was added into Mg-Al alloys was investigated at two levels of 3 and 6wt%. The other experimental materials were NaCl and CaCl2. The microstructures were of the samples analyzed with Optical Microscopy, SEM and XRD, and the mechanical properties were determined by micro-hardness and tensile test. The results showed that the mechanical properties of Mg- 6Al- 3B2O3- 1NaCl- 1CaCl2 increased and the microstructure was satisfactory, for a cast alloy, i.e.the tensile strength was 175MPa.

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Catur Pramono ◽  
Sri Widodo ◽  
Muhammad Galih Ardiyanto

Composite is a material consisting of two or more components which have characteristics mild and relatively strong. This study used bagasse fiber which is widely produced in sugar industry. Treatment of bagasse fiber by soaked in alkaline solution (NaOH) for 2 hours to remove the cork / wax attached to the fiber. Manufacture of composite by hand lay up. The matrix used in this study is epoxy. The fraction volume of composite between bagasse fiber and epoxy are 4%: 96%, 8%: 92% and 12%: 88%. The mechanical properties tested is tensile strength. The tensile test refers to ASTM D638 type 4. The highest tensile test composite resulted at the fraction volume composite of bagasse fiber with epoxy 12%: 88% i.e. 28.43 MPa.


2005 ◽  
Vol 488-489 ◽  
pp. 385-388
Author(s):  
Qiang Li ◽  
Qu Dong Wang ◽  
Xiao Qing Zeng ◽  
Wen Jiang Ding ◽  
Quanbo Tang ◽  
...  

Nd, Y and Ca containing Mg-Zn-Zr alloys are produced by electromagnetic direct-chilling casting process, and extruded at a temperature of 643K with two extrusion ratios of 38:1 and 22:1, respectively. The grain size is markedly reduced from 80µm in as-cast alloy to 2~5µm in as-extruded alloy due to dynamic recrystallization, and lamellar eutectics at grain boundaries in as-cast alloy are broken up and fine precipitates in the matrix come forth during hot extrusions. Mechanical properties of the alloys are measured by tensile test from room temperature to 523K. Nd, Y and Ca are favorable to the strength of the hot-extruded alloy, especially the elevated-temperature strength, which is above 200MPa in ultimate tensile strength at 523K.


2005 ◽  
Vol 488-489 ◽  
pp. 589-592 ◽  
Author(s):  
Ming Yi Zheng ◽  
Xiao Guang Qiao ◽  
Shi Wei Xu ◽  
Kun Wu ◽  
Shigeharu Kamado ◽  
...  

Equal channel angular extrusion (ECAE) was applied to an extruded ZW1101 (Mg - 11wt%Zn - 0.9wt%Y) Mg alloy containing quasicrystallines. The as-extruded ZW1101 alloy had an initial grain size of about 12 µm and bands of quasicrystalline phases parallel to the extrusion direction. After the extruded alloy was subjected to ECAE processing, the grain size was refined to about 0.5 µm, and the quasicrystalline phases were further broken and dispersed in the matrix. After the ECAE processing, the micro-hardness and yield strength of the alloy were increased, however, the ultimate tensile strength and the ductility of the alloy were slightly decreased.


2007 ◽  
Vol 546-549 ◽  
pp. 391-394
Author(s):  
Ding Fei Zhang ◽  
Li Ping Ren ◽  
Hong Ju Zhang ◽  
Wei Yuang

Developing new alloys and techniques is important for the applications of magnesium alloy products. The greatest challenge in the area is to exploit new wrought magnesium alloys[1]. In this paper, the effects of Zn addition on the microstructures and mechanical properties of the MZK60 wrought alloy which is modified from ZK60 have been investigated. The microstructures of these alloys at various states were evaluated by optical microscopy. The mechanical properties at room temperature of these alloys were studied systematically by tensile test. Experimental results indicated that increasing Zn content to 7~10%wt is able to get not only higher tensile strength and yield strength, but also higher elongation.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 108 ◽  
Author(s):  
Junjie Xiong ◽  
Hong Yan ◽  
Songgen Zhong ◽  
Minzhu Bi

The effects of addition of different amounts of rare earth ytterbium (Yb) on the microstructure and mechanical properties of the casting ADC12 alloy were investigated by mechanical properties testing and microstructure observation. The results indicate that Yb modification had a big influence on the microstructure and properties of the as-cast alloy. The optimum level of Yb content was 0.8 wt %. The coarse dendritic primary α-Al phases were fully refined, leading to the decreasing of the secondary dendrite arm spacing. The morphology of eutectic silicon phases changed from acicular into short rod-like and even granular. There was a structural transformation of β-Fe phases from massive to small rod-shaped morphology. Additionally, the tensile strength, elongation, and microhardness were 267.9 MPa, 4.2%, and 107.3 HV, respectively, increases of 55.4, 121.1, and 41.4%, respectively, compared with the matrix alloy. Fractographic examinations reveal that mainly ductile fracture for Yb addition of 0.8 wt %. The fracture appearances matched the tendency of the tensile properties. Furthermore, the addition of Yb can generate a rare earth phase consisting of the three elements of Al, Si, Yb, with some small iron-rich phases attached around the rare earth phase.


2012 ◽  
Vol 192-193 ◽  
pp. 95-100
Author(s):  
Tian Bao Li ◽  
Zhao Yang ◽  
Bing Li ◽  
Yu Long Ye

Hypo/hyper-eutectic Al-Si bi-metal composite parts were prepared by the strain-induced melt activated (SIMA) thixo-forging. The interfaces of the bi-metal composites were observed using OM, and SEM. The tensile strength and hardness of the matrix alloys and the bonding strength at the interface were assessed by tensile test and micro-indent test. Results show that the eutectic structure joined together on the interface under the pressure. However, there are some defects such as holes and impurities were found near the interface. The tensile test samples were broken in Al-20 wt. % Si matrix. The bonding strengths at the interfaces were higher than 80 MPa. Results show that the hardness gradually increasing from 55 HV in Al-7 wt. % Si alloy to 180 HV in Al-20 wt. % Si alloy, which demonstrate the composite interface transited smoothly. The composite interface has an average hardness of 80 HV.


2013 ◽  
Vol 800 ◽  
pp. 375-378
Author(s):  
Jian Feng ◽  
Jin Liang Huang ◽  
Yu Xin Jia

A new kind of Mg-12Li-3Gd-3Y-0.6Zr alloys was prepared in vacuum conditions with the protection of argon atmosphere. The effects of heat treatment on the microstructure and mechanical properties of Mg-12Li-3Gd-3Y-0.6Zr alloy were studied by optical microscopy, SEM, XRD and tensile test. The results show that the highest tensile strength of the alloy reaches 142MPa after aging treatment at 373K for 2h, and the best elongation of the alloy reaches 54% after solid solution and aging treatment at 673K for 2h + 373K for 2h. The X-ray analysis of the investigated alloy shows that the phase structure of the investigated alloy is β-Li, Mg2Gd and Mg24Y5.


2006 ◽  
Vol 326-328 ◽  
pp. 1857-1860
Author(s):  
Hong Mei Chen ◽  
Hua Shun Yu ◽  
Jing Zhang ◽  
Lin Zhang ◽  
Guang Hui Min

The Al2O3-TiC/Al composites were prepared by injecting CO2 gas into Ti contained Al-Si alloy melts. The microstructure of the composites was examined by XRD, SEM and TEM. It was indicated that both Al2O3 and TiC particles can be formed by the in situ reaction of CO2 with Ti and Al in the melten alloys. The Al2O3 and TiC particles in size of 0.3~1.5μm distributed uniformly in the matrix. The volume fraction of the particles is mainly depend upon the time of CO2 injection.The tensile strength at room temperature of the composites can reach 346.08MPa and the hardness is 149.6MPa HBS, repectively, which are higher than those of the matrix alloy.


2012 ◽  
Vol 445 ◽  
pp. 289-294 ◽  
Author(s):  
S.G. Shabestari ◽  
R. Gholizadeh

Dense precipitation of various intermetallic compounds is a common feature in the microstructure of Al-Si piston alloys. In this investigation, microstructure of LM13 alloy and three high Cu-containing Al-Si piston alloys with different amounts of Ni, Fe, and Mn were studied by means of optical microscopy (OM) and scanning electron microscopy (SEM). Chemical composition of the phases was determined by using energy dispersive X-ray analysis (EDX). The precipitation of the phases was studied through thermal analysis of the solidifying samples. Also, tensile properties and hardness of the samples were measured. The results showed that the various intermetallics such as Al12(FeMn)3Si2, Al3Ni, Al9FeNi, and Al3CuNi precipitated during the solidification. The high Cu-containing alloy with optimum levels of Ni (1.8 wt.%), Fe (0.75 wt.%), and Mn (0.3 wt.%) has the highest tensile strength (250 MPa) and hardness (110 BHN) among the other alloys.


2011 ◽  
Vol 694 ◽  
pp. 635-639 ◽  
Author(s):  
Wei Xue Li ◽  
Yun Feng Nie ◽  
Dun Dong Wang

AZ91D alloy composites reinforced by CNTs/SiCp were fabricated using stir casting process. The mechanical properties of the composites were tested, observed and analyzed the microstructure, the fractographs were observed and analyzed via scanning electron microscope. The results showed that CNTs/SiCp could not only refine the grains of the composites, but also bear the load of resistance to deformation. Compared with the matrix alloy, the tensile strength, the elastic modulus, the micro-hardness and the elongation rate of the composites had been enhanced significantly. But the mechanical properties would be fell down with the more addition of CNTs/SiCp.


Sign in / Sign up

Export Citation Format

Share Document