Global and Local Structural Evolution during Deformation and Annealing of FCC Metals

2007 ◽  
Vol 550 ◽  
pp. 169-180 ◽  
Author(s):  
Niels Hansen

Deformation of metals from medium to high strain significantly affect the deformation structure as well as the recovery and recrystallization behaviour when deformed samples are annealed. This behaviour is illustrated for FCC metals of medium to high stacking fault energy, with emphasis on the behaviour of aluminium and aluminium alloys deformed by cold rolling to large strain. The analysis encompasses hardness testing, EBSD and TEM. The deformation microstructure is a lamellar structure of dislocation boundaries and high angle boundaries where the percentages of the latter increases to about 60-80% at large strain. The macrotexture is a typical rolling texture, which is composed of individual texture components present as micrometre and submicrometre size volumes. In the lamellar structure correlations have been established between microstructural parameters and local orientations showing for example variations in stored energy between the texture components and large variations in the spatial distributions of the high angle lamellar boundaries. Such local variations can affect the structural coarsening during recovery at low temperature leading to significant structural difference on a local scale. The local variations in the deformed structure can also significantly affect the structural changes taking place locally during high temperature annealing thereby affecting the evolution of the structure and texture on a macroscopic scale.

2006 ◽  
Vol 519-521 ◽  
pp. 79-84 ◽  
Author(s):  
X. Huang ◽  
Q. Xing ◽  
Dorte Juul Jensen ◽  
Niels Hansen

TEM, Kikuchi diffraction analyses, EBSD, neutron diffraction and hardness measurements have been applied in a study of commercial purity aluminum (AA1200) cold rolled to strains 2 and 4 and afterwards recovered by a heat treatment for 2h at temperatures up to 220 °C. The deformation microstructure is a lamellar structure delineated by dislocation boundaries and high angle boundaries ( ) parallel to the rolling plane. The macrotexture is a typical rolling texture which is composed of individual texture components present as micrometer- and submicrometre-sized volumes. In the lamellar structure, correlations have been established between microstructural parameters and the local texture, showing for example that the density of high angle boundaries and the stored energy vary locally. The local variations affect the annealing behaviors in a way that some regions coarsen faster than others, leading to a recovered structure which is heterogeneous.


2008 ◽  
Vol 584-586 ◽  
pp. 417-421 ◽  
Author(s):  
Hong Wang Zhang ◽  
X. Huang ◽  
Niels Hansen ◽  
Reinhard Pippan ◽  
Michael Zehetbauer

The strength of a deformed metal depends on the content of high angle boundaries, low angle dislocation boundaries and the dislocations between the boundaries. High angle boundaries contribute by Hall-Petch strengthening, whereas for the low angle dislocation boundaries and dislocations between boundaries the strengthening is proportional to the square root of the dislocation density. Based on an assumption of additivity of these contributions, the flow stresses of metals deformed by cold rolling have been calculated successfully. In the present investigation pure Ni (99.9%) has been deformed by high pressure torsion (HPT) to von Mises strains of 0.9, 1.7, 8.7 and 12. The strength of the HPT Ni has been determined by Vickers microhardness (HV) measurements and the microstructural parameters have been determined by transmission electron microscope (TEM) in the longitudinal section. HPT has been compared with deformation by cold rolling and torsion based on the structural evolution with strain and the stress-structure relationship. Based on an assumption of a linear additivity of boundary strengthening and dislocation strengthening, good agreement has been found between the calculated and the experimental flow stress.


2012 ◽  
Vol 715-716 ◽  
pp. 895-900
Author(s):  
Valeriy Dudko ◽  
Andrey Belyakov ◽  
Vladimir Skorobogatykh ◽  
Izabella Schenkova ◽  
Rustam Kaibyshev

Structural changes in a 9%Cr martensitic steel after 1%, 4% creep and creep rupture test at 650°C and stress of 118 MPa were examined. Heat treatment provided the formation of tempered martensite lath structure (TMLS) in the steel. The precipitations of second phase particles along block and lath boundaries provide effective stabilization of the TMSL under annealing/aging condition. This structure hardly changed under creep conditions in grip portion of crept sample. Significant coarsening of both the second phase particles and the martensite laths takes place in neck portion. In addition, the latter ones lose their original morphology and are replaced by large strain-induced subgrains. It should be noted that the increase of subgrain size is in almost direct proportion to the particle growth during the creep to 4% strain. The rapid growth of martesite laths followed by their evolution to deformation subgrains takes place within the tertiary creep regime.


2005 ◽  
Vol 495-497 ◽  
pp. 821-826 ◽  
Author(s):  
Werner Skrotzki ◽  
N. Scheerbaum ◽  
C.G. Oertel ◽  
Heinz Günter Brokmeier ◽  
Satyam Suwas ◽  
...  

Silver of 3N purity was deformed at room temperature by equal channel angular pressing (ECAP) using three passes of route A. The global and local texture were investigated by neutron diffraction and high-energy synchrotron radiation, respectively. The texture is characterized by typical simple shear components of fcc metals which differently deviate from their ideal positions. Local texture measurements reveal that the intensity and inclination of the texture components with respect to the extrusion direction depend on the distance from the top of the extruded bar and change from pass to pass. Reasons for the texture gradient are discussed. The texture of silver is compared with that of copper having a higher stacking fault energy.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 800
Author(s):  
Vladimír Girman ◽  
Maksym Lisnichuk ◽  
Daria Yudina ◽  
Miloš Matvija ◽  
Pavol Sovák ◽  
...  

In the present study, the effect of wet mechanical alloying (MA) on the glass-forming ability (GFA) of Co43Fe20X5.5B31.5 (X = Ta, W) alloys was studied. The structural evolution during MA was investigated using high-energy X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and magnetic measurements. Pair distribution function and extended X-ray absorption fine structure spectroscopy were used to characterize local atomic structure at various stages of MA. Besides structural changes, the magnetic properties of both compositions were investigated employing a vibrating sample magnetometer and thermomagnetic measurements. It was shown that using hexane as a process control agent during wet MA resulted in the formation of fully amorphous Co-Fe-Ta-B powder material at a shorter milling time (100 h) as compared to dry MA. It has also been shown that substituting Ta with W effectively suppresses GFA. After 100 h of MA of Co-Fe-W-B mixture, a nanocomposite material consisting of amorphous and nanocrystalline bcc-W phase was synthesized.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1522-C1522
Author(s):  
Peter Blanchard ◽  
Brendan Kennedy ◽  
Chris Ling

Significant efforts have been made in the development of (Bi0.5Na0.5)TiO3 ferroelectrics as an alternative to the lead-based industry standard PbTi1-xZrxO3.[1] It has also been shown that doping the A- and B-site of (Bi0.5Na0.5)TiO3 can greatly improve the ferroelectric behavior of these materials,[2] possibly due to the formation of two or more ferroelectric phases at a morphotropic phase boundary (MPB). As such, there is a significant interest in understanding the structural changes in (Bi0.5Na0.5)TiO3-based solid solutions. (Bi0.5Na0.5)TiO3 was originally described as adopting a rhombohedral structure in space group R3c, However, the accuracy of this description has been greatly debated. It was recently suggested that (Bi0.5Na0.5)TiO3 actually adopts a monoclinic structure in space group Cc.[3] Given this recent controversy, we investigated the structural evolution of (Bi0.5Na0.5)TiO3-based solid solutions, particularly the (Bi0.5Na0.5)Ti1-xZrxO3 and (1-x)(Bi0.5Na0.5)TiO3–xBiFeO3 solid solutions., using both diffraction and spectroscopy techniques. Diffraction measurements on (Bi0.5Na0.5)TiO3 confirm that both monoclinic Cc and rhombohedral R3c phases are present at room temperature. Diffraction analysis showed that doping (Bi0.5Na0.5)TiO3 with a small amount of (Bi0.5Na0.5)ZrO3 and BiFeO3 can stabilizes the rhombohedral phase. The Ti/Fe K-edge and Zr L3-edge XANES spectra analysis was performed to determine the effects doping has on the local displacement of the B-site cations.


2018 ◽  
Vol 86 (1) ◽  
pp. 80-97 ◽  
Author(s):  
Liang Ma ◽  
Tom Christensen

The structure of political and administrative institutions is important for achieving public goals. It is not fixed, however, but may change as a result of environmental and cultural processes or because of changes in leadership. Structural changes in the central government apparatus feature prominently in the recent strand of reform and change literature, but we know little about structural changes in contexts other than Western democracies. In this article, we analyze the main types of and possible reasons for structural changes in the central government apparatus in China over the past 70 years. We find interesting patterns of structural change in line with administrative developments. Using the multiple perspectives of organization theory, these can be primarily explained by political cycles or action taken by the central leadership, but they have also been influenced by cultural elements, economic growth, and societal transformation. Points for practitioners We document the key patterns of organizational restructuring in China’s central government from 1949 to 2016. Political cycles and economic reform and development are found to be the key drivers of structural evolution. The results show that the political will of top leaders plays a crucial role in navigating structural reforms, yet institutional reforms are still largely confined to rhetoric and symbolism without substantively transforming the landscape of government architecture. Sustained structural reforms are difficult to achieve successfully, which suggests that alternative avenues may be required to streamline administrative processes and improve interagency coordination.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 63 ◽  
Author(s):  
Wei Dang ◽  
Jie Liu ◽  
Xiaoxu Wang ◽  
Kaiqi Yan ◽  
Aolin Zhang ◽  
...  

The modification before the stabilization process could tune the exothermic behavior and the structural evolution of PAN fibers during stabilization. In this study, we demonstrate that a rapid thermal pretreatment in nitrogen can effectively mitigate the exothermic behavior of PAN fibers, such as decreasing the initial temperature, broadening the exothermal peak, and decreasing the nominal heat release during heating the fibers in air. The color of fibers has shown gradual changes from white to light yellow, yellow and brown during thermal pretreatment in nitrogen with the increase of pretreating temperature and time. The differential scanning calorimetry (DSC), Fourier Transform Infrared Spectrometer (FTIR), X-ray diffraction (XRD), and Thermogravimetric Analysis (TG) characterization have been applied to analyze the thermal properties, chemical and physical structural difference between PAN, and thermally pretreated PAN fibers. The thermal pretreatment of PAN fibers in nitrogen could induce cyclization, dehydrogenation, and cross-linking reactions, in which the cyclization play an important role on improving the cyclization index of stabilized PAN fibers. Meanwhile, the pretreatment can result in noticeable changes of the aggregation structure of PAN fibers, as indicated by the increase of crystallinity and crystalline size. These structural modifications can benefit the main cyclization reaction during stabilization and enhance the carbon yield in resultant carbon fibers. The rapid thermal pretreatment in nitrogen could increase efficiency of modification on PAN fibers, and that could save much time and energy. It is beneficial to manufacture low-cost carbon fibers and to spread the applications of carbon fibers.


Sign in / Sign up

Export Citation Format

Share Document