Effect of Initial Texture on the Deformed Microstructure of IF Steel

2007 ◽  
Vol 558-559 ◽  
pp. 1395-1400
Author(s):  
Jun Yun Kang ◽  
Brigitte Bacroix ◽  
Kyu Hwan Oh ◽  
Hu Chul Lee

The development of deformation texture and microstructure was examined for four different initial textures. IF steel sheets with a majority of α-, ε-, and γ-fiber and near random texture were prepared and cold rolled. The specimens exhibited characteristic behaviors in rolling texture evolution and deformation-induced misorientation development, according to their initial textures, especially at small strain levels. Due to the orientation dependence of intra-granular misorientation accumulation, the different texture evolutions affected the induced misorientation distribution. A larger fraction of γ-fiber orientations was related to more prominent misorientation development, while the initial texture stability simultaneously affected the misorientation development. The unstable, initial ε-fiber texture showed a stronger tendency of misorientation accumulation than the stable α-fiber during the subsequent cold rolling.

2018 ◽  
Vol 921 ◽  
pp. 189-194
Author(s):  
Huan Ping Yang ◽  
Yao Mian Wang

The cold rolling texture evolution as a function of strain path in pure titanium with initial typical recrystallized texture has been studied using viscoplastic self-consistent simulations. Three different strain paths, namely unidirectional rolling, two-step cross rolling and multi-step cross rolling have been employed to investigate the effect of strain path change on the evolution of deformation texture. The simulation results indicate that the activation of predominant prismatic slip in unidirectional rolling sample results in the formation of commonly cold rolling fiber texture RD//<10-10> in pure titanium, whereas the increased activity of basal slip over that of prismatic slip is responsible for the strong ND//<hkil> fiber texture in the two cross rolled samples.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tomas Manik ◽  
Knut Marthinsen ◽  
Kai Zhang ◽  
Arash Imani Aria ◽  
Bjørn Holmedal

In the present work, the deformation textures during flat profile extrusion from round billets of an AA6063 and an AA6082 aluminium alloy have been numerically modeled by coupling FEM flow simulations and crystal plasticity simulations and compared to experimentally measured textures obtained by electron back-scatter diffraction (EBSD). The AA6063 alloy was extruded at a relatively low temperature (350°C), while the AA6082 alloy, containing dispersoids that prevent recrystallization, was extruded at a higher temperature (500°C). Both alloys were water quenched at the exit of the die, to maintain the deformation texture after extrusion. In the center of the profiles, both alloys exhibit a conventional β-fiber texture and the Cube component, which was significantly stronger at the highest extrusion temperature. The classical full-constraint (FC)-Taylor and the Alamel grain cluster model were employed for the texture predictions. Both models were implemented using the regularized single crystal yield surface. This approach enables activation of any number and type of slip systems, as well as accounting for strain rate sensitivity, which are important at 350°C and 500°C. The strength of the nonoctahedral slips and the strain-rate sensitivity were varied by a global optimization algorithm. At 350°C, a good fit could be obtained both with the FC Taylor and the Alamel model, although the Alamel model clearly performs the best. However, even with rate sensitivity and nonoctahedral slip systems invoked, none of the models are capable of predicting the strong Cube component observed experimentally at 500°C.


2013 ◽  
Vol 331 ◽  
pp. 443-447 ◽  
Author(s):  
Fu Tao Han ◽  
Zuo Cheng Wang ◽  
Cai Nian Jing ◽  
Xiao Min Liu ◽  
Jie Su ◽  
...  

Microstructure and microtexture evolution during batch annealing of warm-rolled Ti-IF steel sheets were investigated in this paper. It was founded that α fiber texture and the relatively weak γ fiber texture were formed in warm-rolled and air-cooled Ti-IF steel sheets. In the early stage of recrystallization, the {111} recrystallization texture was formed from the deformed {111} grains in warm-rolled Ti-IF steels. In the later stage of recrystallization, the α fiber texture was consumed and the γ fiber texture in recrystallized grains was further developed. The main recrystallization texture characteristics of warm-rolled Ti-IF steel sheets had been decided in the early stages of recrystallization, and the oriented nucleation mechanism played a leading role in the formation of recrystallization texture in warm-rolled Ti-IF steel sheets.


2014 ◽  
Vol 783-786 ◽  
pp. 1954-1960
Author(s):  
Toshiharu Morimoto ◽  
Y. Fuyuki ◽  
A. Yanagida ◽  
Jun Yanagimoto

T.M.C.P.(Thermo Mechanical Control Processing) has been widely used to improveplastic formability in steel strips. We have produced interstitial free steel(IF steel) strips and ferriticstainless-steel strips through T.M.C.P. rolling method. Optimizing conditions of hot rolling, hotrolled annealing, cold rolling and cold rolled annealing, we developed texture prediction model. Wecan predict rolling texture accurately using the conventional Taylor model. Moreover, we preciselypredict recrystallization texture classifying the total number of microscopic􀀁 slips which arecalculated using the Taylor model. We consider that these calculated results provednucleation-oriented model and two types of recrystallization and grain growth mechanisms exit inour studies. One mechanism is that grains which had the small total number of microscopic slips arepreferred orientation for the hot rolled and annealed ferritic stainless-steel strip. The othermechanism is that grains which had the high total number of microscopic slips are preferredorientation for the cold rolled and annealed IF steel strip.


2016 ◽  
Vol 879 ◽  
pp. 2014-2019
Author(s):  
Osamu Umezawa ◽  
Norimitsu Koga

Unalloyed titanium was rolled with 20% reduction in each pass at 293 K using a cross rolling mill, where the upper and lower rolling axes were skewed each other at an angle of 0, 5 or 10 degree with parallel position. Multi-pass flat-rolling was carried out without any lubricants up to the true strain of 1, where two kinds of rolling directions such as tandem (uni-direction for all passes) and reverse (opposite direction in every passes) were adopted. The strain of specimens was increased proportionally as higher passes regardless of the rolling conditions. The transverse direction (TD) split deformation texture in titanium was generally developed under the cross angle of 0 degree. In the present strips of tandem, a main orientation was identified as (-12-18)[10-10]. In the case of tandem with the cross angle of 5 degree, a fiber texture was developed along (-12-18). That is the reason why a rotation in the rolling direction (RD) was overlapped. In the case of reverse with the cross angle of 5 degree, the main orientation was separated into [10-10] and [2-311] that were corresponded to TD and RD splits, respectively.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 178
Author(s):  
Ning Kong ◽  
Jie Zhang ◽  
Hongbo Li ◽  
Boyu Wei ◽  
David R. G. Mitchell

A novel polyphosphate lubricant was used and evaluated during hot (ferrite) rolling of an interstitial-free (IF) steel. The texture evolution of these rolled IF steels have been examined by means of X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) measurements. The polyphosphate lubricant shows an improved lubrication performance in terms of the texture optimization compared with lubricating oil and with unlubricated conditions. The γ-fiber texture is enhanced, and less shear texture is produced. This microstructure is responsible for enhanced drawability of ferrite rolled IF steels. The very high thermal stability of the polyphosphate enabled its use at very high temperatures (from 700 to 800 °C). Rolling temperature exerted limited influence on the resulting rolling texture evolution. The polyphosphate lubricant stabilizes the surface texture and reduces the gradient of shear texture through the thickness. The in-grain shear bands are reduced significantly (48.5%) compared with the unlubricated condition. Measured grain orientations indicate that the favorable texture of {111}<112> along the γ-fiber is developed while the undesired α-fiber texture of {001}<110> is effectively suppressed.


2011 ◽  
Vol 702-703 ◽  
pp. 123-126
Author(s):  
Onur Saray ◽  
Gencaga Purcek ◽  
B. Mahato ◽  
Sandip Ghosh Chowdhury

Interstitial-Free steel (IF-steel) sheets were severe plastically deformed using a continuous equal-channel angular extrusion/pressing technique called “Equal-Channel Angular Sheet Extrusion (ECASE). After processing, texture development as well as microstructural alteration and tensile properties were investigated. The microstructural investigations revealed that the processed sheets exhibited a dislocation cell and/or subgrain structures with mostly low angle grain boundaries. It was also observed that the strength of the processed sheets increased substantially after ECASE processing in the expense of ductility. It was shown that the ECASE has moderate influence on the texture of IF-steel sheets through route A. Intially there was θ partial fiber which changes to {110}θ with straining.


2007 ◽  
Vol 26-28 ◽  
pp. 51-54
Author(s):  
Yan Dong Liu ◽  
Q.W. Jiang ◽  
He Tong ◽  
Yan Dong Wang ◽  
Liang Zuo

in this paper, the texture evolution of cold rolling and recrystallization of dual phase steel sheets is studied. The experimental results show that the cold rolling texture components are γ fiber (<111>//N.D.) and α fiber (<110>//R.D.). After heat treatment (austenizing temperatures 960°C and 980°C, 0.7°C/S cooling to 650°C, a rational holding time to form ferrite and martensite microstructure), the texture components are still γ fiber and α fiber, the recrystallization texture in dual phase steel sheet is remarkable different compared to the recrystallization texture in the pure (single phase??) ferrite.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 288 ◽  
Author(s):  
Anmin Yin ◽  
Xiaodong Xu ◽  
Shuyi Zhang ◽  
Christ Glorieux ◽  
Xuedao Shu ◽  
...  

The analyses of texture evolution of cold rolled interstitial free (IF) steel sheets during annealing and recrystallization are presented, in which the dispersion curves of surface acoustic waves (SAW) excited by laser-induced transient thermal grating method are measured. The results show that the angular anisotropy of the SAW velocity changes due to the texture changes at different stages of recrystallization. The theoretically simulated angular dispersion of SAW velocity within individual crystal revealed that the change of SAW velocity is closely related to recrystallization texture evolution. A model for the angular dependence of the SAW velocity in textured polycrystalline IF steel with different oriented crystals is presented and the simulations are yielded, which show that the results agree with those of experiments.


2002 ◽  
Vol 753 ◽  
Author(s):  
Kyosuke Kishida ◽  
Masahiko Demura. Yozo Suga ◽  
Toshiyuki Hirano

ABSTRACTTexture evolutions of cold-rolled thin foils of binary stoichiometric Ni3Al single crystals were examined as a function of the initial crystal orientation. In the cases of the initial rolling direction (RD) close to <001>, the rolling texture above 90% reduction is composed of two {110}<112> textures, which resulted from the formation of the banded structure with two types of differently oriented matrix bands. The macroscopic shape of these cold-rolled foils is straight and simply elongated along RD keeping their rectangular shape. In contrast, when the initial RD is close to <112>, the texture and the microstructure are rather uniform but the foils are curved, twisted, and eventually cracked from the side edge of the samples. Based on the analysis of the texture evolution and the microstructure observation, the operative slip systems were determined.


Sign in / Sign up

Export Citation Format

Share Document