Study on Susceptibility of Hydrogen Embrittlement in a Tool Steel

2007 ◽  
Vol 561-565 ◽  
pp. 103-106 ◽  
Author(s):  
X.T. Wang ◽  
Tadeusz Siwecki

Susceptibility of hydrogen embrittlement of a super grade AISI 420 tool steel was studied. Tensile samples were cathodically charged to different hydrogen level. Hydrogen induced mechanical property degradation was measured by tensile tests at a low strain rate. Fractography of broken surfaces was observed using SEM. Relationship between hydrogen content and tensile strength and elongation were studied. Critical hydrogen contents were obtained for different heat treatment states. It was found that for annealed materials could stand for a 3.5ppm hydrogen for keeping 80% of original ductility, and the effect of hydrogen on strength was unobvious. However, for material quenched and tempered at 250°C, only 0.3ppm hydrogen could lead the ductility drop to 80% of original. The material quenched and tempered at 500°C was more sensitive on hydrogen, less than 1ppm hydrogen could lead the strength drop to 80% of original.

2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6115
Author(s):  
Marina Cabrini ◽  
Sergio Lorenzi ◽  
Cristian Testa ◽  
Francesco Carugo ◽  
Tommaso Pastore ◽  
...  

Laser bed powder fusion (LPBF) is an additive manufacturing technology for the fabrication of semi-finished components directly from computer-aided design modelling, through melting and consolidation, layer upon layer, of a metallic powder, with a laser source. This manufacturing technique is particularly indicated for poor machinable alloys, such as Alloy 625. However, the unique microstructure generated could modify the resistance of the alloy to environment assisted cracking. The aim of this work was to analyze the stress corrosion cracking (SCC) and hydrogen embrittlement resistance behavior of Alloy 625 obtained by LPBF, both in as-built condition and after a standard heat treatment (grade 1). U-bend testing performed in boiling magnesium chloride at 155 and 170 °C confirmed the immunity of the alloy to SCC. However, slow strain rate tests in simulated ocean water on cathodically polarized specimens highlighted the possibility of the occurrence of hydrogen embrittlement in a specific range of strain rate and cathodic polarization. The very fine grain size and dislocation density of the thermally untreated specimens appeared to increase the hydrogen diffusion and embrittlement effect on pre-charged specimens that were deformed at the high strain rate. Conversely, heat treatment appeared to mitigate hydrogen embrittlement at high strain rates, however at the slow strain rate all the specimens showed a similar behavior.


2013 ◽  
Vol 209 ◽  
pp. 6-9 ◽  
Author(s):  
Rajendra Doiphode ◽  
S.V.S. Narayana Murty ◽  
Nityanand Prabhu ◽  
Bhagwati Prasad Kashyap

Mg-3Al-1Zn (AZ31) alloy was caliber rolled at 250, 300, 350, 400 and 450 °C. The effects of caliber rolling temperature on the microstructure and tensile properties were investigated. The room temperature tensile tests were carried out to failure at a strain rate of 1 x 10-4s-1. The nature of stress-strain curves obtained was found to vary with the temperature employed in caliber rolling. The yield strength and tensile strength followed a sinusoidal behaviour with increasing caliber rolling temperature but no such trend was noted in ductility. These variations in tensile properties were explained by the varying grain sizes obtained as a function of caliber rolling temperature.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yilong Han ◽  
Songbai Xue ◽  
Renli Fu ◽  
Lihao Lin ◽  
Zhongqiang Lin ◽  
...  

This work focused on the influence of hydrogen content on the microstructure and mechanical properties of ER5183 Al-Mg-Mn alloy wires for aluminum alloy welding. The hydrogen content of the ER5183 wires was measured, the macroscopic and microscopic morphologies of fractures were observed as well as the microstructure of the wires, and the tensile strength of the wires was also tested and investigated. The experimental results demonstrated three typical irregular macroscopic fractures of the wires appeared during the drawing process when the hydrogen content exceeded 0.23 μg/g. In the meantime, the aggregated pores were observed in the microstructure of the ϕ5.2 mm wire with the hydrogen content of 0.38 μg/g. Such defects may become the origin of cracks in subsequent processing and tensile tests. Moreover, higher hydrogen content in the ϕ5.2 mm welding wire will bring obvious changes in the fracture surface, which are internal cracks and micropores replacing the original uniform and compact dimples. With the higher hydrogen content, the tensile strength and plastic strain rate of ϕ1.2 mm wires would decrease. At the same time, unstable crack propagation would occur during the process of plastic deformation, leading to fracture. Considering the mechanical properties and microstructure, the hydrogen content of the ER5183 wires should be controlled below 0.23 μg/g.


2018 ◽  
Vol 10 (1) ◽  
pp. 26-53
Author(s):  
Junzhou Duan ◽  
Yubin Lu ◽  
Shu Zhang ◽  
Xiquan Jiang

To comparatively study the tensile properties and fracture patterns of recycled aggregate concrete with various replacement percentages (i.e. 0%, 25%, 50%, 75%, and 100%) of recycled coarse aggregate, the dynamic direct tensile tests, splitting tests, and spalling tests of recycled aggregate concrete in the strain-rate range of 100–102 s−1 were carried out using large diameter (75 mm) split Hopkinson tensile bar and pressure bar. Test results show that for recycled aggregate concrete, the quasi-static direct tensile strength is more marvelous than its quasi-static splitting strength. When recycled coarse aggregate replacement percentage is 0%–75%, the replacement percentage impact minimally on the quasi-static tensile strength of recycled aggregate concrete. In dynamic tensile tests, there exists apparent difference between the dynamic direct tensile strength and dynamic splitting. The dynamic tensile strength of recycled aggregate concrete increases with the increase of average strain-rate in all three kinds of tests. The average strain-rate affects the damage form of recycled aggregate concrete, which indicates that the recycled aggregate concrete has obvious rate sensitivity. There shows no obvious regularity between the dynamic tensile strength and the recycled coarse aggregate replacement percentage. And the indirect tensile strength calculation method used in this article offers the theoretical basis for the engineering application of recycled aggregate concrete.


Author(s):  
Keita Sugimoto ◽  
Tatsuo Nishiuchi

In Japan, design ground motion has increased due to the frequent occurrence of large earthquakes. To improve seismic performance, dams and spillway gate piers (hereafter, piers) are being reinforced. The methods used to strengthen them include concrete overlay, jacketing, etc. On their boundaries, there are concrete joints. These joints are designed as integrated bodies. However, although no accidents have been reported, the joints may be a weak point. The purpose of this study is to understand the effects of concrete joint condition, assuming strengthening for dams and piers such as concrete overlay and jacketing. Dynamic splitting tensile tests of concrete specimens joining old and new bodies were conducted. In dynamic splitting tensile tests, the experimental parameters are the condition of joint surfaces in terms of strengthening and strain rate for earthquake ground motion. The conditions of joint surfaces are raw concrete surfaces, chipped surfaces, and surfaces with rebar insertion. Three cases of strain rate are considered, including a static case and two dynamic cases (about 1,000 μ/s and 10,000 μ/s). Test results showed all joint conditions caused a decrease in tensile strength. There was the effect of increasing tensile strength due to strain rate, regardless of joint condition. It was shown that concrete joints without adhesives might be weak points in reinforced structures.


2016 ◽  
Vol 51 (14) ◽  
pp. 1971-1977 ◽  
Author(s):  
NH Noor Mohamed ◽  
Hitoshi Takagi ◽  
Antonio N Nakagaito

The mechanical properties of cellulose nanofiber-reinforced polyvinyl alcohol composite were studied. Neat polyvinyl alcohol films, cellulose nanofiber sheets, and their nanocomposites containing cellulose nanofiber weight ratios of 5, 15, 30, 40, 45, 50 and 80 wt% were fabricated. Heat treatment by hot pressing at 180℃ was conducted on the specimens to study its effect to the mechanical properties and the results were compared with the non heat-treated specimens. Morphology of the composites was studied by scanning electron microscopy and the mechanical properties were evaluated by means of tensile tests. The results showed that increase of cellulose nanofiber content from 5 wt% to 80 wt% has increased the tensile strength of the composites up to 180 MPa, with cellulose nanofiber content higher than 40 wt% yielding higher tensile strength. The heat-treated specimens exhibited higher tensile strength compared to those of untreated specimens.


Sign in / Sign up

Export Citation Format

Share Document