A Growth Kinetics Model for the Radical Oxidation of Silicon

2008 ◽  
Vol 573-574 ◽  
pp. 147-152 ◽  
Author(s):  
Olaf Storbeck ◽  
Wieland Pethe ◽  
Regina Hayn

The silicon oxide growth kinetics were investigated for single wafer rapid thermal (RTP) and large batch vertical furnace radical oxidation processes under varying conditions. An oxidation model is proposed in which the oxidation rate of hydrogen–assisted radical oxidation is a combination of constant–rate low pressure wet oxidation and an oxygen radical driven process decaying with increasing oxide thickness. The model parameters for selected RTP and batch furnace oxidation processes are extracted and discussed. The implications of this model are compared to observed properties of the radical oxidation process like lattice orientation, stress independence, bird’s beak formation and thickness uniformity.

2005 ◽  
Vol 8 (1) ◽  
Author(s):  
Masanori Shinohara ◽  
Teruaki Katagiri ◽  
Keitaro Iwatsuji ◽  
Yoshinobu Matsuda ◽  
Yasuo Kimura ◽  
...  

AbstractPlasma oxidation processes of hydrogen-terminated Si(100), (110), and (111) surfaces are investigated by infrared absorption spectroscopy (IRAS) in multiple internal reflection (MIR) geometry. We measured IRAS spectra of hydrogen-terminated Si surfaces exposed to oxygen-plasma in the Si-H stretching vibration region. IRAS data demonstrated that oxygen-plasma affects two influences on the Si surfaces; one is that oxygen-plasma removes surface hydrogen to oxidize the Si surfaces. The other is that it forces the hydrogen into the subsurface regions where oxygen species cannot reach. The former effect does not depend on the crystal graphic orientations, but the latter depends on it. Therefore, in order to oxidize perfectly the H-terminated Si surfaces using oxygen-plasma, the sample surfaces need to be heated so that oxygen atoms can diffuse into the subsurface regions.


1916 ◽  
Vol 24 (4) ◽  
pp. 315-327 ◽  
Author(s):  
Francis G. Blake

Cultures of Streptococcus viridans when brought into contact with red blood corpuscles have the power of transforming oxyhemoglobin into methemoglobin. The reaction occurs only in the presence of living streptococci when they are able to carry on their metabolic activities. The intensity of the reaction runs roughly parallel with the period of growth and multiplication of the bacteria and gradually diminishes and disappears as growth ceases. There is no apparent relation between the activity of a given strain of Streptococcus viridans in producing methemoglobin and its source or virulence. If the streptococci are suspended in salt solution they are unable to change oxyhemoglobin into methemoglobin unless some nutrient substance is present. Of the various nutrient substances tested dextrose is the most efficient in enabling the organisms to bring about the reaction. The reaction does not occur in the absence of oxygen, and is retarded by an excess of oxygen. Substances which tend to reduce the metabolic activities of the bacteria to a minimum exert an inhibitory action on methemoglobin formation. While not definitely proving it to be so, the results obtained in the above experiments strongly support the supposition that the reaction is not due to injurious substances produced by the bacteria or to products arising from the decomposition of the nutrient material present, but rather to the metabolic activities of the bacteria themselves when they are surrounded by environmental conditions which render growth and multiplication possible. The exact chemical nature of the change of oxyhemoglobin to methemoglobin is not known, but it is probably an oxidation process or a combination of reduction and oxidation processes, as pointed out by Heubner. As Cole has shown, the action of aminophenol is of great interest in this connection, in that it acts like a catalytic agent in being able to transform much more hemoglobin into methemoglobin than would be possible if the reaction were a simple molecular one. The metabolic activities of bacteria are largely in the nature of oxidation and reduction processes. The transformation of oxyhemoglobin into methemoglobin by streptococci of the viridans type, therefore, may be analogous to the action of such substances as aminophenol, and the reaction may be due to the active oxidation and reduction processes occurring in the neighborhood of the bacterial cells. The failure of the reaction to occur in the absence of oxygen and its retardation in the presence of an excess of oxygen, both with streptococci and with pneumococci (Cole) would seem to support this theory. Such results, however, may be due to the abnormal conditions surrounding the bacteria with consequent inhibition of their metabolic activities. Cole concluded as the result of his study of methemoglobin formation by pneumococci that since bacteria may injure red blood cells apparently by disturbances in oxidation in the immediate neighborhood of the organisms rather than by the production of a definite toxin, it is possible that bacteria may injure other tissue cells in a like manner and that the pathological effects produced by these bacteria may be explained on this basis. The experimental results recorded above have shown that the formation of methemoglobin by Streptococcus viridans in no way differs from its formation by pneumococci, and they lend support to the theory that bacteria may be injurious to tissues because of the disturbances in oxidation brought about by the metabolic activities of the organisms, especially those associated with growth and multiplication. It is believed that this theory may be particularly applicable to the pathological effects caused by Streptococcus vindans because the lesions produced by it, whether single or multiple, both in man and in experimental animals, are prone to be localized and associated with the actual presence of the streptococci in the lesions.


2010 ◽  
Vol 159 ◽  
pp. 163-166 ◽  
Author(s):  
S. Alexandrova ◽  
A. Szekeres

In the present paper we discuss the defects at the oxide/Si interface and the structure of silicon oxide films grown on plasma hydrogenated (100) and (111)Si. The effect of oxide thickness ranging from 7 to 40 nm on the interface parameters was examined. Electrically active defects were characterized through C-V and G-V measurements. The dependence of the refractive index on oxide thickness was studied. Information on the oxide structure was inferred through the refractive index evaluated from ellipsometric measurements. From both, the electrical and optical results a characteristic oxide thickness was found, below which the oxide structure is different from SiO2, most probably SiOх. It is related to a modified Si surface during the pre-oxidation plasma treatment and its value depends on Si orientation and pre-clean conditions. A characteristic oxide thickness of 13 nm was found for Si hydrogenated without heating and, of 9 nm for Si hydrogenated at 300oC.


2020 ◽  
Vol 1014 ◽  
pp. 144-148
Author(s):  
Ling Sang ◽  
Jing Hua Xia ◽  
Liang Tian ◽  
Fei Yang ◽  
Rui Jin ◽  
...  

The effect of the field oxidation process on the electrical characteristics of 6500V 4H-SiC JBS diodes is studied. The oxide thickness and field plate length have an effect on the reverse breakdown voltage of the SiC JBS diode. According the simulation results, we choose the optimal thickness of the oxide layer and field plate length of the SiC JBS diode. Two different field oxide deposition processes, which are plasma enhanced chemical vapor deposition (PECVD) and low pressure chemical vapor deposition (LPCVD), are compared in our paper. When the reverse voltage is 6600V, the reverse leakage current of SiC JBS diodes with the field oxide layer obtained by LPCVD process is 0.7 μA, which is 60% lower than that of PECVD process. When the forward current is 25 A, the forward voltage of SiC JBS diodes with the field oxide layer obtained by LPCVD process is 3.75 V, which is 10% higher than that of PECVD process. There should be a trade-off between the forward and reverse characteristics in the actual high power and high temperature applications.


1999 ◽  
Vol 567 ◽  
Author(s):  
K. Watanabe ◽  
S. Kimura ◽  
T. Tatsumi

ABSTRACTRadical oxidation at thickness of under 2.0 nm in an ultrahigh vacuum (UHV) system with an electron cyclotron resonance (ECR) plasma has been studied. The interface roughness and oxide density were evaluated by atomic force microscopy (AFM) and grazing incidence xray reflectrometry, respectively. We found the oxide thickness could be easily controlled at Tsub = 750°C when using radical oxygen at 5.0×10−3Torr. The interface roughness at a thickness of 1.8 nm, measured by the root mean square (RMS), was 0.11 nm. The density of the radical oxide fell as the oxide thickness decreased, especially at less than 2.0 nm. However, the density of the radical oxide annealed in molecular oxygen at 5×10−3Torr and Tsub = 750°C increased, without the oxide thickness increasing. We think that the first insertion of an oxygen atom into the first Si layer has a much higher energy barrier than that into a SiOx layer. The radical oxygen can pass through this higher energy barrier, and thus oxygen molecules fill the oxide layers. This mechanism means that we can control the oxide thickness and density separately at thickness of less than 2.0 nm through the radical oxidation time and the annealing time in molecular oxygen. We expect low-pressure radical oxidation to be the most suitable process for future ultrathin gate oxidation.


Sign in / Sign up

Export Citation Format

Share Document