Ultrathin oxide film formation using radical oxygen in a UHV system

1999 ◽  
Vol 567 ◽  
Author(s):  
K. Watanabe ◽  
S. Kimura ◽  
T. Tatsumi

ABSTRACTRadical oxidation at thickness of under 2.0 nm in an ultrahigh vacuum (UHV) system with an electron cyclotron resonance (ECR) plasma has been studied. The interface roughness and oxide density were evaluated by atomic force microscopy (AFM) and grazing incidence xray reflectrometry, respectively. We found the oxide thickness could be easily controlled at Tsub = 750°C when using radical oxygen at 5.0×10−3Torr. The interface roughness at a thickness of 1.8 nm, measured by the root mean square (RMS), was 0.11 nm. The density of the radical oxide fell as the oxide thickness decreased, especially at less than 2.0 nm. However, the density of the radical oxide annealed in molecular oxygen at 5×10−3Torr and Tsub = 750°C increased, without the oxide thickness increasing. We think that the first insertion of an oxygen atom into the first Si layer has a much higher energy barrier than that into a SiOx layer. The radical oxygen can pass through this higher energy barrier, and thus oxygen molecules fill the oxide layers. This mechanism means that we can control the oxide thickness and density separately at thickness of less than 2.0 nm through the radical oxidation time and the annealing time in molecular oxygen. We expect low-pressure radical oxidation to be the most suitable process for future ultrathin gate oxidation.

1991 ◽  
Vol 235 ◽  
Author(s):  
J. C. Barbour ◽  
H. J. Stein

ABSTRACTThe incorporation of hydrogen into silicon nitride films grown downstream from an electron cyclotron resonance (ECR) plasma decreased rapidly with increasing substrate temperature (100–600°C). Fourier transform infra-red (FTIR) spectroscopy showed that the hydrogen in the as-grown material was primarily bonded to nitrogen. However, an applied bias of -200 V caused an increase in the number of Si-H bonds relative to N-H bonds, as a result of increased ion-beam damage. In addition, ion irradiation of an as-grown film with 175 keV Ar+ at room temperature showed that H transferred from N-H bonds to Si-H bonds without a loss of H. Elastic recoil detection (ERD) and FTIR of thermally annealed films showed that the stability of H incorporated during deposition increased with deposition temperature, and that the N-H bond was more stable than the Si-H bond above 700°C. Deuterium plasma treatments, at 600°C, of annealed films caused isotopic substitution with a conservation of bonds. Therefore, hydrogen loss from annealed films is apparently accompanied by a reduction in dangling bonds.


1991 ◽  
Vol 236 ◽  
Author(s):  
J. C. Barbour ◽  
H. J. Stein

AbstractThe incorporation of hydrogen into silicon nitride films grown downstream from an electron cyclotron resonance (ECR) plasma decreased rapidly with increasing substrate temperature (100-600°C). Fourier transform infra-red (FTIR) spectroscopy showed that the hydrogen in the as-grown material was primarily bonded to nitrogen. However, an applied bias of -200 V caused an increase in the number of Si-H bonds relative to N-H bonds, as a result of increased ion-beam damage. In addition, ion irradiation of an asgrown film with 175 keV Ar+ at room temperature showed that H transferred from N-H bonds to Si-H bonds without a loss of H. Elastic recoil detection (ERD) and FTIR of thermally annealed films showed that the stability of H incorporated during deposition increased with deposition temperature, and that the N-H bond was more stable than the Si-H bond above 700°C. Deuterium plasma treatments, at 600°C, of annealed films caused isotopic substitution with a conservation of bonds. Therefore, hydrogen loss from annealed films is apparently accompanied by a reduction in dangling bonds.


2003 ◽  
Vol 786 ◽  
Author(s):  
Go Yamanaka ◽  
Takafumi Uchikawa ◽  
Shun-ichiro Ohmi ◽  
Tetsushi Sakai

ABSTRACTAlON thin films formed by the electron cyclotron resonance (ECR) plasma oxidation of the AlN thin films deposited on p/p+−Si(100) by the ECR sputtering method were investigated for high-k gate insulator application. The leakage current density was found to be decreased with the ECR plasma oxidation of the AlN thin films. Furthermore, the equivalent oxide thickness (EOT) of 1.5 nm with the leakage current density of 5.1×10−4 A/cm2 (@Vfb−1 V) was obtained after the 1000°C rapid thermal annealing (RTA) because of the high quality interfacial layer formation.


1997 ◽  
Vol 473 ◽  
Author(s):  
Heng-Chih Lin ◽  
Edwin C. Kan ◽  
Toshiaki Yamanaka ◽  
Simon J. Fang ◽  
Kwame N. Eason ◽  
...  

ABSTRACTFor future CMOS GSI technology, Si/SiO2 interface micro-roughness becomes a non-negligible problem. Interface roughness causes fluctuations of the surface normal electric field, which, in turn, change the gate oxide Fowler-Nordheim tunneling behavior. In this research, we used a simple two-spheres model and a three-dimensional Laplace solver to simulate the electric field and the tunneling current in the oxide region. Our results show that both quantities are strong functions of roughness spatial wavelength, associated amplitude, and oxide thickness. We found that RMS roughness itself cannot fully characterize surface roughness and that roughness has a larger effect for thicker oxide in terms of surface electric field and tunneling behavior.


1996 ◽  
Vol 440 ◽  
Author(s):  
P. C. Chow ◽  
R. Paniago ◽  
R. Forrest ◽  
S. C. Moss ◽  
S. S. P. Parkin ◽  
...  

AbstractThe growth by sputtering of a series of thin films of Fe/Au on MgO(001) substrates was analyzed using Bragg and diffuse X-ray scattering. The Fe (bcc) layer grows rotated by 45° with respect to the MgO – Au(fcc) (001) epitaxial orientation, resulting in an almost perfect match between the two metallic structures. By collecting the X-ray diffuse scattering under grazing incidence using a 2-dimensional image plate detector, we mapped the reciprocal space of these films. We characterized the correlated interface roughness starting with a buffer of Fe in which only three interfaces are present. The propagation of the roughness was subsequently characterized for Fe/Au multilayers with 40 and 100 bilayers. We observe an enlargement of the surface features as a function of time, evidenced by the longer lateral cutoff length measured for thicker films.


1999 ◽  
Vol 585 ◽  
Author(s):  
S. Matsuo ◽  
M. Yamamoto ◽  
T. Sadoh ◽  
T. Tsurushima ◽  
D. W. Gao ◽  
...  

AbstractEffects of ion-irradiation on oxidation of silicon at low temperatures (130°C) in an argon and oxygen mixed plasma excited by electron cyclotron resonance (ECR) interaction are investigated. First, dependence of energy and flux of incident ions on the flow rate and the microwave power is evaluated. It is shown that the flow rate and the microwave power are key parameters for controlling the energy and the flux of incident ions, respectively. Second, growth kinetics of the oxide films are studied. The growth rate depends on the energy and the flux of argon ions irradiated to the substrate, and the growth thickness increases proportionally to the root square of the oxidation time. Thus, the growth rate is limited by diffusion of oxidants enhanced by irradiation with argon ions. The effect of substrate bias on oxidation characteristics is also discussed. The electrical properties of the oxide films are improved by increasing the bias. The improvement is due to the reduction of damage at the surface of the substrate induced by the irradiation.


2013 ◽  
Vol 423-426 ◽  
pp. 756-761
Author(s):  
Li Jun Sang ◽  
Qiang Chen ◽  
Zhong Wei Liu ◽  
Zheng Duo Wang

Diamond-like carbon films (DLC) were deposited on single crystalline silicon surface under different RF negative bias in microwave electron cyclotron resonance (ECR) plasma source. The chemical structure and morphology were characterized by Fourier transformation infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The friction coefficient of films was measured to examine the film property later. The results show that the smooth and compact deposited films were typical hydrogenated diamond-like carbon with CHn stretching vibration in 2800-3000cm-1. It is noticed that with the increase of RF bias on the substrate the peak intensity for C-H stretching vibration in spectrum between 2800cm-1~3000cm-1 increased at the beginning and then decreased, which caused the friction coefficient of the film being smaller and then larger in reverse. In 50W RF biased power one can obtain the maximum-CHn peak intensity and the minimum friction coefficient.


1996 ◽  
Vol 441 ◽  
Author(s):  
Sung-Tae Kim ◽  
Hyun-Ho Kim ◽  
Moon-Yong Lee ◽  
Won-Jong Lee

AbstractPerovskite-phase lead zirconate titanate (PZT) thin films were fabricated at 4751C by the electron cyclotron resonance (ECR) plasma enhanced DC magnetron multi-target reactive sputtering method on Pt/Ti/SiO2/Si and Pt/SiO2/Si substrates. Stoichiometric perovskite PZT films were readily obtained on Pt/Ti/SiO2/Si substrates because Ti atoms which were out-diffused to the Pt surface facilitated Pb incorporation by forming lead titanate at the early stage of deposition process. Activation of oxygen by ECR plasma facilitated the oxidation reaction and Pb incorporation into the film. Thus perovskite-phase PZT can be obtained on the Pt/SiO2/Si substrate.


2022 ◽  
Vol 1048 ◽  
pp. 121-129
Author(s):  
Samit Karmakar ◽  
Soumik Kumar Kundu ◽  
Aditya Mukherjee ◽  
Sujit Kumar Bandyopadhyay ◽  
Satyaranjan Bhattacharyya ◽  
...  

Microstructural analysis of commercially available cold-rolled polycrystalline copper foil, etched and annealed in an in-house developed Electron Cyclotron Resonance (ECR) Plasma Enhanced Chemical Vapour Deposition (PE-CVD) reactor, have been carried out using x-ray diffraction (XRD) studies. The annealing experiments were carried out under a vacuum environment, keeping the working pressure of the reactor at 50×10-3 mbar, for three different time spans of 30 mins, 45 mins and 1 hour at 823 K (550 °C) and 923 K (650 °C) respectively in presence of hydrogen plasma. The XRD studies reveal the significance of annealing time at two different temperatures for the determination of physical and microstructural parameters such as the average grain size and micro-strain in copper lattice by Williamson-Hall (W-H) method.


Sign in / Sign up

Export Citation Format

Share Document