Researches on Rules of the Longitudinal Residual Stress Distribution in Straightening Deformation Zone of Heavy Rail with Multi-Rollers

2008 ◽  
Vol 575-578 ◽  
pp. 231-236 ◽  
Author(s):  
Lin Chen ◽  
Zhong Liang Tian ◽  
Mi Chao Gao ◽  
Wei Zong ◽  
Jian Guo Wang ◽  
...  

The paper simulated and researched the straightening process of heavy rail by finite element software of ANSYS/LS-DYNA. The residual stress of the rail head, rail base, rail loin in the 7th deformation zone meets the real straightening condition in the straightening simulation. The calculation indicates: The residual stress of the rail head, rail base, rail loin in various deformation zones varies significantly like the variation of tensile-compression-tensile. Compared with the on-site rule, the residual stress of rail base decreased155 Mpa, this is in agreement with the values of practice.

1994 ◽  
Vol 29 (1) ◽  
pp. 73-78 ◽  
Author(s):  
M Zochowski ◽  
M Tracz

This paper presents a destructive procedure for the determination of longitudinal residual stress distribution in a thin layer in the vicinity of the running surface of a rail head and the neighbouring area of rail cross-section. Wheel passages on the track produce plastic deformation in the running surface layer and thereby create a strong compression with a sharp stress gradient in the layer. This longitudinal stress distribution is a very important component of the stress pattern and strongly influences crack propagation in the rail head.


1994 ◽  
Vol 364 ◽  
Author(s):  
X.-L. Wang ◽  
S. Spooner ◽  
C. R. Hubbard ◽  
P. J. Maziasz ◽  
G. M. Goodwin ◽  
...  

AbstractNeutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.


2014 ◽  
Vol 501-504 ◽  
pp. 574-577
Author(s):  
Zhuang Nan Zhang ◽  
Xin Zhao ◽  
Ya Nan Zhao

This paper used ANSYS finite element software to simulate the residual stress of the welded monosymmetric I-section and obtain residual stress distribution curves, analyzed the influence of flange width ratio on welding residual stress peak value and the stress distribution. The studies have shown that: with the flange width ratio decrease gradually, peak value of residual stress in flange and web is to increase; peak value of residual tensile stresses in both flange and web close to the steel yield strength fy, peak value of residual compressive stresses is 0.4fy in wide flange and the web near wide flange and in narrow flange and web near narrow flange is 0.3fy; the distribution of the residual tensile stress in the flange and web have growth trend.


Author(s):  
FA de Castro ◽  
Paulo P Kenedi ◽  
LL Vignoli ◽  
I I T Riagusoff

Metallic hyperstatic structures, like beams, submitted to excessive loads, do not fail completely before fully yielding in more than one cross section. Indeed, for built-in beams, three cross sections must be fully yielded before the final failure can occur. So, modeling the evolution of the cross-section residual stress distribution is an important subject that should be addressed to guarantee the stress analysis modeling correctness. This paper analyses the residual stress distribution evolution, in critical cross sections, of built-in beams during a transversal concentrated load growth, until the final failure through hinges formation. A finite element model is also presented. The results show good matches with the numerical model, used as a reference.


2013 ◽  
Vol 853 ◽  
pp. 135-142
Author(s):  
Jiang Cao ◽  
Chun Fu Li ◽  
Yan Wang ◽  
Xing Sun ◽  
Shu Yun Wang ◽  
...  

High strength aluminum alloys have been widely used in aviation manufacturing due to their favorable combination of intensity, stress corrosion resistance and toughness. However, the research and control of residual stress distribution in aluminum components have become a key issue to be solved during the heat treatment and subsequent processes. By means of the analysis of micro-indentation method and ANSYS finite element method, the residual stress distribution in 2A02 aluminum components after water quenching were systematically investigated, mainly considering two factors of the symmetry of structure and the variation of surface constraint. This study may give great help to the technology of relieving forgings residual stress of two alloys.The results of micro-indentation method show that the absolute value of the residual stress within the sample tends to decrease as the condition of constraint increase at the location of the same thickness; the absolute value of the surface residual stress also tends to decrease as the thickness of the sample increase with the same constraint conditions. The tested results by micro-indentation method are in consistent with the results of finite element simulation to a great extent.The results of finite element simulation are as follows: for these two aluminum alloy, the stress field distribution during the process of quenching is mainly influenced by the thickness of the samples. In general, at the initial stage of the quenching process, the stress state at the components surface are controlled by tensile stress in the direction of both thickness and width, while the residual stress within the samples is dominated by compressive stress; at the end of the quenching process, the stress field distribution just turn to the opposite. These results are in great agreement with the corresponding results of the indentation method.


1993 ◽  
Vol 60 (2) ◽  
pp. 300-309 ◽  
Author(s):  
T. Nishimura

New equations for calculating residual stress distribution are derived from the theory of elasticity for tubes. The initial distribution of the stresses including the shearing stress is computed from longitudinal distributions of residual stresses measured by the X-ray methods at the surface after removal of successive concentric layers of material. For example, the residual stresses of a steel tube quenched in water were measured by the X-ray diffraction method. The new method was also applied to a short tube with hypothetical residual stress distribution. An alternative finite element analysis was made for a verification. The residual stresses computed by finite element modeling agreed well with the hypothetical residual stresses measured. This shows that good results can be expected from the new method. The equations can also be used for bars by simple modification.


Sign in / Sign up

Export Citation Format

Share Document