Ultrafine and Nanostructured Refractory Metals Processed by SPD: Microstructure and Mechanical Properties

2008 ◽  
Vol 579 ◽  
pp. 75-90 ◽  
Author(s):  
Q. Wei ◽  
K.T. Ramesh ◽  
Laszlo J. Kecskes ◽  
Suveen N. Mathaudhu ◽  
K.T. Hartwig

Severe plastic deformation (SPD) has been demonstrated to be the most efficient method to produce bulk metals with ultrafine grained (UFG, 100 nm < grain size d < 500 nm) and nanocrystalline (NC, d<100 nm) microstructures. Such metals exhibit some unique properties owing to their unusual microstructures such as high-energy, non-equilibrium grain boundaries. Efforts in the past two decades have focused on metals with face-centered cubic (fcc) structures. Recent experimental results have shown that UFG/NC metals with body-centered cubic (bcc) structures have some properties that are distinct from their fcc counterparts. Further, the majority of the fcc metals are very ductile and have relatively low melting points, making them easier to process using SPD. On the contrary, many bcc metals are refractory, and are very sensitive to interstitial impurities, rendering them difficult to work via SPD. In this article, we attempt to summarize the state-of-the-art of UFG/NC refractory metals processed by SPD, with focus on the microstructure and mechanical properties. Comparisons with UFG/NC fcc metals are made where appropriate. Outstanding issues and future directions are also addressed.

2015 ◽  
Vol 816 ◽  
pp. 324-329 ◽  
Author(s):  
Hui Jiang ◽  
Li Jiang ◽  
Yi Ping Lu ◽  
Tong Min Wang ◽  
Zhi Qiang Cao ◽  
...  

The elements Mo, Cr and V were added to the W-Ni-Co system high entropy alloys, the effects of these added elements on microstructure and mechanical properties of these alloys were studied. The alloys were produced by vacuum arc melting. The compositions were W0.5Ni2Co2VMo0.5,W0.5Ni2Co2VCr0.5and W0.5Ni2Co2CrMo0.5(denoted as Alloy 1, Alloy 2 and Alloy 3) respectively. The theoretical melting temperatures were higher than 2000 K. X-ray diffraction, SEM and energy dispersive spectroscopy (EDS) results indicated that the matrix of the alloys is face-centered cubic (FCC) solid-solution, the alloys showed dendrite crystal structure. Ni, Co elements were enriched in the dendrite areas, the W, Mo were enriched in the inter-dendrite regions ,while V, Cr elements were uniform distribution. The Vickers hardness of these alloys was 376.1 HV, 255.88 HV and 306.8 HV, respectively. The yield strength values (σ0.2) of Alloy 1, Alloy 2 and Alloy 3 were approximately 1000MPa, 750MPa, 250MPa, respectively. The alloys show good compression plasticity deformation capacity at RT.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 238
Author(s):  
Sujung Son ◽  
Jongun Moon ◽  
Hyeonseok Kwon ◽  
Peyman Asghari Rad ◽  
Hidemi Kato ◽  
...  

New AlxCo50−xCu50−xMnx (x = 2.5, 10, and 15 atomic %, at%) immiscible medium-entropy alloys (IMMEAs) were designed based on the cobalt-copper binary system. Aluminum, a strong B2 phase former, was added to enhance yield strength and ultimate tensile strength, while manganese was added for additional solid solution strengthening. In this work, the microstructural evolution and mechanical properties of the designed Al-Co-Cu-Mn system are examined. The alloys exhibit phase separation into dual face-centered cubic (FCC) phases due to the miscibility gap of the cobalt-copper binary system with the formation of CoAl-rich B2 phases. The hard B2 phases significantly contribute to the strength of the alloys, whereas the dual FCC phases contribute to elongation mitigating brittle fracture. Consequently, analysis of the Al-Co-Cu-Mn B2-strengthened IMMEAs suggest that the new alloy design methodology results in a good combination of strength and ductility.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4007
Author(s):  
Qimeng Zhang ◽  
Bo Cui ◽  
Bin Sun ◽  
Xin Zhang ◽  
Zhizhong Dong ◽  
...  

The effects of rare earth element Sm on the microstructure, mechanical properties, and shape memory effect of the high temperature shape memory alloy, Cu-13.0Al-4.0Ni-xSm (x = 0, 0.2 and 0.5) (wt.%), are studied in this work. The results show that the Sm addition reduces the grain size of the Cu-13.0Al-4.0Ni alloy from millimeters to hundreds of microns. The microstructure of the Cu-13.0Al-4.0Ni-xSm alloys are composed of 18R and a face-centered cubic Sm-rich phase at room temperature. In addition, because the addition of the Sm element enhances the fine-grain strengthening effect, the mechanical properties and the shape memory effect of the Cu-13.0Al-4.0Ni alloy were greatly improved. When x = 0.5, the compressive fracture stress and the compressive fracture strain increased from 580 MPa, 10.5% to 1021 MPa, 14.8%, respectively. When the pre-strain is 10%, a reversible strain of 6.3% can be obtained for the Cu-13.0Al-4.0Ni-0.2Sm alloy.


2021 ◽  
Vol 63 (11) ◽  
pp. 1846-1853
Author(s):  
A. Yu. Eroshenko ◽  
Yu. P. Sharkeev ◽  
M. A. Khimich ◽  
P. V. Uvarkin ◽  
A. I. Tolmachev ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4223
Author(s):  
Po-Sung Chen ◽  
Yu-Chin Liao ◽  
Yen-Ting Lin ◽  
Pei-Hua Tsai ◽  
Jason S. C. Jang ◽  
...  

Most high-entropy alloys and medium-entropy alloys (MEAs) possess outstanding mechanical properties. In this study, a series of lightweight nonequiatomic Al50–Ti–Cr–Mn–V MEAs with a dual phase were produced through arc melting and drop casting. These cast alloys were composed of body-centered cubic and face-centered cubic phases. The density of all investigated MEAs was less than 5 g/cm3 in order to meet energy and transportation industry requirements. The effect of each element on the microstructure evolution and mechanical properties of these MEAs was investigated. All the MEAs demonstrated outstanding compressive strength, with no fractures observed after a compressive strain of 20%. Following the fine-tuning of the alloy composition, the Al50Ti20Cr10Mn15V5 MEA exhibited the most compressive strength (~1800 MPa) and ductility (~34%). A significant improvement in the mechanical compressive properties was achieved (strength of ~2000 MPa, strain of ~40%) after annealing (at 1000 °C for 0.5 h) and oil-quenching. With its extremely high specific compressive strength (452 MPa·g/cm3) and ductility, the lightweight Al50Ti20Cr10Mn15V5 MEA demonstrates good potential for energy or transportation applications in the future.


2021 ◽  
Vol 11 (6) ◽  
pp. 2832
Author(s):  
Haibo Liu ◽  
Cunlin Xin ◽  
Lei Liu ◽  
Chunqiang Zhuang

The structural stability of high-entropy alloys (HEAs) is closely related to their mechanical properties. The precise control of the component content is a key step toward understanding their structural stability and further determining their mechanical properties. In this study, first-principle calculations were performed to investigate the effects of different contents of each component on the structural stability and mechanical properties of Co-Cr-Fe-Ni HEAs based on the supercell model. Co-Cr-Fe-Ni HEAs were constructed based on a single face-centered cubic (FCC) solid solution. Elemental components have a clear effect on their structure and performance; the Cr and Fe elements have an obvious effect on the structural stability and equilibrium lattice constant, respectively. The Ni elements have an obvious effect on stiffness. The Pugh ratios indicate that Cr and Ni addition may increase ductility, whereas Co and Fe addition may decrease it. With increasing Co and Fe contents or decreasing Cr and Ni contents, the structural stability and stiffness of Co-Cr-Fe-Ni HEAs are improved. The structural stability and mechanical properties may be related to the strength of the metallic bonding and covalent bonding inside Co-Cr-Fe-Ni HEAs, which, in turn, is determined by the change in element content. Our results provide the underlying insights needed to guide the optimization of Co-Cr-Fe-Ni HEAs with excellent mechanical properties.


2008 ◽  
Vol 32 ◽  
pp. 255-258
Author(s):  
Bohayra Mortazavi ◽  
Akbar Afaghi Khatibi

Molecular Dynamics (MD) are now having orthodox means for simulation of matter in nano-scale. It can be regarded as an accurate alternative for experimental work in nano-science. In this paper, Molecular Dynamics simulation of uniaxial tension of some face centered cubic (FCC) metals (namely Au, Ag, Cu and Ni) at nano-level have been carried out. Sutton-Chen potential functions and velocity Verlet formulation of Noise-Hoover dynamic as well as periodic boundary conditions were applied. MD simulations at different loading rates and temperatures were conducted, and it was concluded that by increasing the temperature, maximum engineering stress decreases while engineering strain at failure is increasing. On the other hand, by increasing the loading rate both maximum engineering stress and strain at failure are increasing.


2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


Sign in / Sign up

Export Citation Format

Share Document