The Investigation of Thin Protecting Layers on Roughened Galvanized Steel Surfaces Produced by Different Coating Methods

2008 ◽  
Vol 589 ◽  
pp. 433-438 ◽  
Author(s):  
Péter Németh ◽  
Ágnes Csanády ◽  
Katalin Papp ◽  
Anna C. Pintér ◽  
László Szabó ◽  
...  

Protective, chromate substitute thin layers on roughened galvanized surfaces produced at OCAS (Arcelor, Belgium) were characterized and compared using Scanning Electron Microscopy (SEM+EDS), Atomic Force Microscopy (AFM), Nanoindentation and X-ray Photoemission Spectroscopy (XPS). EDX maps, line scans and point analyses obtained at various places of the surfaces have shown differences between the CVD and silane nanolayers in the matter of thickness distribution and composition. At cross-section specimens the thickness of the layers could be shown. The hardness differences caused by layer thickness variations are hard to follow by nanoindentation as the penetration depth of the indenter is much larger than the thickness of the coatings. XPS measurements can distinguish between the chemical states of silicon in CVD and silane coatings.

2002 ◽  
Vol 09 (01) ◽  
pp. 261-265
Author(s):  
H. J. SHIN ◽  
M. K LEE ◽  
C. C. HWANG ◽  
K. J. KIM ◽  
T.-H. KANG ◽  
...  

The changes of the structure and chemical states of photoluminescent p-type porous silicon (PS) caused by annealing in vacuum were investigated with atomic force microscopy and X-ray photoemission spectroscopy. The relative intensities of the silicon dioxide and suboxide peaks increased with the annealing temperature. The average size of the fine crystallites of the as-prepared samples was 5–10 nm and became 50–100 nm after being annealed at 550°C. The cause of photoluminescence quenching upon annealing is discussed.


2018 ◽  
Vol 16 (3) ◽  
pp. 233
Author(s):  
Utari Utari ◽  
Kusumandari Kusumandari ◽  
Budi Purnama ◽  
Mudasir Mudasir ◽  
Kamsul Abraha

Surface morphology of Fe(III)–porphyrin thin layers was studied using atomic force microscopy. The thin layer samples used in these experiments were deposited by spin coating methods on indium–tin-oxide substrates at room temperature under atmospheric conditions. Variations of thin layer of Fe(III)-porphyrin were done by modifying the rotational speed and the concentration of the solution. The experimental results demonstrated that the Fe(III)–porphyrin layers were observed as discrete nanomolecular islands. Both the number of nano-islands and thickness of the layer increased significantly with increasing concentration. A layer thickness of 15 nm was obtained for low concentrations of 0.00153 M and become 25 nm for dense concentrations of 0.153 M. Conversely, the higher number of islands were deposited on the surface of the substrate at a lower rotational speed.


1995 ◽  
Vol 378 ◽  
Author(s):  
Art J. Nelson ◽  
K. Sinha ◽  
John Moreland

AbstractSynchrotron radiation soft x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the CdS/Cu2Se heterojunction interface. Cu2−xSe layers were deposited on GaAs (100) by molecular beam epitaxy from Cu2Se sources. Raman spectra reveal a strong peak at 270 cm−1, indicative of the Cu2−xSe phase. Atomic force microscopy reveals uniaxial growth in a preferred (100) orientation. CdS overlayers were then deposited in-situ, at room temperature, in steps on these epilayers. Photoemission measurements were acquired after each growth in order to observe changes in the valence band electronic structure as well as changes in the Se3d and Cd4d core lines. The results were used to correlate the interfacial chemistry with the electronic structure and to directly determine the CdS/Cu2−xSe and heterojunction valence band discontinuity and the consequent heterojunction band diagram. These results are compared to the valence band offset (ΔEv) for the CdS/CuInSe2 heterojunction interface.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2899 ◽  
Author(s):  
Jehan Waeytens ◽  
Vincent Van Hemelryck ◽  
Ariane Deniset-Besseau ◽  
Jean-Marie Ruysschaert ◽  
Alexandre Dazzi ◽  
...  

Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillar structure with a higher β-sheet content than in their native structure. To characterize them, we used an innovative tool that coupled infrared spectroscopy with atomic force microscopy (AFM-IR). With this method, we show that we can detect different individual aggregated species from oligomers to fibrils and study their morphologies by AFM and their secondary structures based on their IR spectra. AFM-IR overcomes the weak spatial resolution of usual infrared spectroscopy and achieves a resolution of ten nanometers, the size of isolated fibrils. We characterized oligomers, amyloid fibrils of Aβ42 and fibrils of α-synuclein. To our surprise, we figured out that the nature of some surfaces (ZnSe) used to study the samples induces destructuring of amyloid samples, leading to amorphous aggregates. We strongly suggest taking this into consideration in future experiments with amyloid fibrils. More importantly, we demonstrate the advantages of AFM-IR, with a high spatial resolution (≤ 10 nm) allowing spectrum recording on individual aggregated supramolecular entities selected thanks to the AFM images or on thin layers of proteins.


2016 ◽  
Vol 23 (06) ◽  
pp. 1650058
Author(s):  
R. SEREIKA ◽  
S. KACIULIS ◽  
A. MEZZI ◽  
M. BRUCALE

Metal–bioorganic compounds of vanadium pentoxide and bovine serum albumin (BSA) (Fraction V) were obtained by using sol–gel method. Series of the samples (BSA)xV2O[Formula: see text]H2O, where [Formula: see text], 0.01 and 0.001, were originally produced by the synthesis of vanadium pentoxide xerogels and subsequent blending with water-dissolved BSA in appropriate molar ratios. It was evident that the gelation process does not occur for [Formula: see text]. For the X-ray photoelectron spectroscopy (XPS) studies, the thin layers of these materials were prepared by drying the gel onto the glass and mica substrates. The surface morphology of the samples was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. It follows from the analysis of experimental XPS spectra of (BSA)xV2O[Formula: see text]H2O that the nitrogen ions in pure albumin and in (BSA)[Formula: see text]V2O[Formula: see text]H2O are present in imine, amine and protonated amine groups. The additional protonated amine arises when the concentration of albumin in (BSA)xV2O[Formula: see text]H2O is low ([Formula: see text]). Increasing the amount of albumin results in decrease of the number of oxygen ions bonded to vanadium. At the same time (with increase of albumin), the component of oxygen bounded to carbon and nitrogen is increasing. In the samples with greater amount of albumin, the reduction of vanadium ions occurs. This means that the trivalent and tetravalent vanadium ions are present together with pentavalent ones.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Guido Scavia ◽  
William Porzio ◽  
Silvia Destri ◽  
Alberto Giacometti Schieroni ◽  
Fabio Bertini

AbstractThe morphology and structure of the overlying poly(3-hexylthiophene) (P3HT) layer onto differently silanized silicon oxide has been studied by Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) techniques. By increasing the silanizer alkyl chain length, the layer morphology evolves from a filament like to globular needle like as a consequence of the different SAM organization, while the P3HT conformation remains edge-on. For each case the effect of the annealing temperature has been studied. For all the cases a particular attention has been paid to the first thin layers close to the interface P3HT/SiOx. The effect of a polar substituent and presence of aromatic ring has been also studied.


2006 ◽  
Vol 6 (11) ◽  
pp. 3572-3576 ◽  
Author(s):  
Hee-Sang Shim ◽  
Hyo-Jin Ahn ◽  
Youn-Su Kim ◽  
Yung-Eun Sung ◽  
Won Bae Kim

We report electrochromic and electrochemical properties of a WO3-Ta2O5 nanocomposite electrode that was fabricated from co-sputtering. Transmission electron microscopy (TEM)images of the WO3-Ta2O5 nanocomposite electrode revealed that morphology of the WO3 film was changed by incorporation of Ta2O5 nanoparticles, and their chemical states were confirmed to be W6+ and Ta5+ oxides from X-ray photoelectron spectroscopy (XPS). The introduction of Ta2O5 to the WO3 film played a role in alleviating surface roughness increase during continuous potential cycling; whereas the surface roughness of the WO3 film was increased from ca. 3.0 nm to ca. 13.4 nm after 400 cycles, the roughness increase on the WO3-Ta2O5 was significantly reduced to 4.2 nm after 400 cycles, as investigated by atomic force microscopy (AFM). This improvement of the stability by adding Ta2O5 may be responsible for the enhanced electrochemical and optical properties over long-term cycling with the WO3-Ta2O5 nanocomposite electrode.


Sign in / Sign up

Export Citation Format

Share Document