Ta2O5-Incorporated WO3 Nanocomposite Film for Improved Electrochromic Performance in an Acidic Condition

2006 ◽  
Vol 6 (11) ◽  
pp. 3572-3576 ◽  
Author(s):  
Hee-Sang Shim ◽  
Hyo-Jin Ahn ◽  
Youn-Su Kim ◽  
Yung-Eun Sung ◽  
Won Bae Kim

We report electrochromic and electrochemical properties of a WO3-Ta2O5 nanocomposite electrode that was fabricated from co-sputtering. Transmission electron microscopy (TEM)images of the WO3-Ta2O5 nanocomposite electrode revealed that morphology of the WO3 film was changed by incorporation of Ta2O5 nanoparticles, and their chemical states were confirmed to be W6+ and Ta5+ oxides from X-ray photoelectron spectroscopy (XPS). The introduction of Ta2O5 to the WO3 film played a role in alleviating surface roughness increase during continuous potential cycling; whereas the surface roughness of the WO3 film was increased from ca. 3.0 nm to ca. 13.4 nm after 400 cycles, the roughness increase on the WO3-Ta2O5 was significantly reduced to 4.2 nm after 400 cycles, as investigated by atomic force microscopy (AFM). This improvement of the stability by adding Ta2O5 may be responsible for the enhanced electrochemical and optical properties over long-term cycling with the WO3-Ta2O5 nanocomposite electrode.

2008 ◽  
Vol 22 (25) ◽  
pp. 2493-2501 ◽  
Author(s):  
HUN-SIK KIM ◽  
MINSUNG KANG ◽  
WON-IL PARK ◽  
DON-YOUNG KIM ◽  
HYOUNG-JOON JIN

Multiwalled carbon nanotubes (MWCNTs) were dispersed in various alcohols such as methanol, ethanol and isopropanol using ultrasonication. In order to disperse the MWCNTs in the alcohols, they were treated using a mixture of H 2 SO 4 and HNO 3 (3 : 1, vol/vol). The concentration of MWCNTs was approximately 0.03 wt.% and they formed a homogeneous dispersion in the alcohol solutions. The functional groups introduced on the surface of the MWCNTs during the acid treatment were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy. The dispersibility of the MWCNTs in the alcohols was characterized using atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The stability of the MWCNT dispersions was also measured using a recently developed optical analyzer (Turbiscan).


Nanomedicine ◽  
2022 ◽  
Author(s):  
Hossein Danafar ◽  
Marziyeh Salehiabar ◽  
Murat Barsbay ◽  
Hossein Rahimi ◽  
Mohammadreza Ghaffarlou ◽  
...  

Aim: To prepare a novel hybrid system for the controlled release and delivery of curcumin (CUR). Methods: A method for the ultrasound-assisted fabrication of protein-modified nanosized graphene oxide-like carbon-based nanoparticles (CBNPs) was developed. After being modified with bovine serum albumin (BSA), CUR was loaded onto the synthesized hybrid (labeled CBNPs@BSA–CUR). The structure and properties of the synthesized nanoparticles were elucidated using transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) methods. Results: CBNPs@BSA–CUR showed pH sensitivity and were calculated as controlled CUR release behavior. The drug-free system exhibited good biocompatibility and was nontoxic. However, CBNPs@BSA–CUR showed acceptable antiproliferative ability against MCF-7 breast cancer cells. Conclusion: CBNPs@BSA–CUR could be considered a highly promising nontoxic nanocarrier for the delivery of CUR with good biosafety.


2021 ◽  
Vol 314 ◽  
pp. 302-306
Author(s):  
Quoc Toan Le ◽  
E. Kesters ◽  
M. Doms ◽  
Efrain Altamirano Sánchez

Different types of ALD Ru films, including as-deposited, annealed Ru, without and with a subsequent CMP step, were used for wet etching study. With respect to the as-deposited Ru, the etching rate of the annealed Ru film in metal-free chemical mixtures (pH = 7-9) was found to decrease substantially. X-ray photoelectron spectroscopy characterization indicated that this behavior could be explained by the presence of the formation of RuOx (x = 2,3) caused by the anneal. A short CMP step applied to the annealed Ru wafer removed the surface RuOx, at least partially, resulting in a significant increase of the etching rate. The change in surface roughness was quantified using atomic force microscopy.


1994 ◽  
Vol 343 ◽  
Author(s):  
M.C. Jun ◽  
J.W. Kim ◽  
K.B. Kim ◽  
B.C. Ahn ◽  
M.K. Han

ABSTRACTWe present a novel oxidation method to improve the surface roughness at the poly-oxide/poly-Si interface. Instead of directly oxidizing the poly-Si to the desired thickness of the SiO2, a thin oxide layer is thermally grown on the poly-Si layer and then an a-Si layer is deposited on the top of the oxide layer. The a-Si layer is used as a silicon-source during next step of oxidation. The a-Si layer is fully oxidized until the poly-oxide/poly-Si interface advances below the initial interface. For comparison, the poly-oxide/poly-Si interface is also obtained by the conventional oxidation method. The surface roughness at the interface is investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM). For the novel oxidation method with the 50 Å thick intermediate oxide, the rms surface roughness at the poly-oxide/poly-Si interface is 30 Å, whereas that is 120 Å for the conventional method.


2000 ◽  
Vol 624 ◽  
Author(s):  
G.J. Berry ◽  
J.A. Cairns ◽  
M.R. Davidson ◽  
Y.C. Fan ◽  
A.G. Fitzgerald ◽  
...  

ABSTRACTAs the trend towards device miniaturisation continues, surface effects and the thermal stability of metal deposits becomes increasingly important. We present here a study of the morphology and composition of platinum films, produced by the UV-induced decomposition of organometallic materials, under various annealing conditions. The surface composition of the metal deposits was studied by X-ray photoelectron spectroscopy, both as-deposited and following thermal treatment. In addition, the morphology of the surface was studied by atomic force microscopy which enabled the investigation of film restructuring. These studies were performed over a range of temperatures up to 1000°C in air and up to 600°C in reducing environments. Complementary information regarding the film morphology has been obtained from transmission electron microscopy. The data has been used to provide an insight into the effects of elevated temperatures on metal films deposited by a direct write method


2011 ◽  
Vol 1301 ◽  
Author(s):  
Rahul Chhabra ◽  
Hicham Fenniri

ABSTRACTElectroless synthesis and hierarchical organization of 1.4 nm Pd and Pt nanoparticles (NPs) on self-assembled Rosette Nanotubes (RNTs) is described. The nucleated NPs are nearly monodisperse and reveal supramolecular organizations guided by RNT templates. Interestingly, the narrow size distribution is attributable to unique templating behavior of RNTs. The resulting metal NP-RNT composites were characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). X-ray Photoelectron Spectroscopy (XPS) was also performed to confirm the nature and composition of RNT-templated NPs.


2020 ◽  
pp. 095400832094229
Author(s):  
Shifeng Wen ◽  
Jiacheng Ma

In this article, polyvinylpyrrolidone (PVP) was used for the noncovalent modification on the surface of graphene. Compared with covalent modification, this method maintained the original structure of graphene layers, thereby maximizing the original properties of graphene. The π–π noncovalent bond was formed between PVP and graphene by X-ray photoelectron spectroscopy analysis, indicating that PVP successfully modified graphene. The thickness of graphene layer was measured by atomic force microscopy, which showed that the distance between graphene layers was increased by 5–6 nm, and the stability of the modified graphene in N, N-dimethylformamide was remarkably improved. The obtained composite coating by combination of the modified graphene and the epoxy resin was subjected to electrochemical impedance test to obtain the best anticorrosive effect of the coating with the graphene content of 0.3 wt%. The results showed that the addition of graphene to the epoxy resin could effectively improve the anticorrosive effect. Meanwhile, the good electrical conductivity allowed the electrons which lost from the substrate to led to air or saline rapidly, thereby reducing the combination of iron ions with oxygen and the generation of corrosion products (iron oxides).


1999 ◽  
Vol 14 (9) ◽  
pp. 3538-3543 ◽  
Author(s):  
C. v. Bechtolsheim ◽  
V. Zaporojtchenko ◽  
F. Faupel

This paper presents the results of a systematic investigation of structure and formation of the interface between gold and trimethylcyclohexane polycarbonate, particularly concerning interface evolvement during gold evaporation and the influence of evaporation rate, substrate temperature, and subsequent annealing. The means of investigation were cross-sectional transmission electron microscopy, atomic force microscopy, and x-ray photoelectron spectroscopy. Extensive metal diffusion into the polymer and cluster formation near the interface were observed at deposition rates of the order of one monolayer per minute and below. The penetration depth is strongly temperature dependent. At high evaporation rates metal aggregation at the surface prevents cluster formation inside the polymer. No diffusion into the polymer was observed from metal films deposited at room temperature after extensive annealing at elevated temperatures.


2012 ◽  
Vol 16 (07n08) ◽  
pp. 713-740 ◽  
Author(s):  
José H. Zagal ◽  
Sophie Griveau ◽  
Mireya Santander-Nelli ◽  
Silvia Gutierrez Granados ◽  
Fethi Bedioui

We discuss here the state of the art on hybrid materials made from single (SWCNT) or multi (MWCNT) walled carbon nanotubes and MN4complexes such as metalloporphyrins and metallophthalocyanines. The hybrid materials have been characterized by several methods such as cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electrochemical microscropy (SECM). The materials are employed for electrocatalysis of reactions such as oxygen and hydrogen peroxide reduction, nitric oxide oxidation, oxidation of thiols and other pollutants.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Angela De Bonis ◽  
Agostino Galasso ◽  
Antonio Santagata ◽  
Roberto Teghil

A MgB2target has been ablated by Nd:glass laser with a pulse duration of 250 fs. The plasma produced by the laser-target interaction, showing two temporal separated emissions, has been characterized by time and space resolved optical emission spectroscopy and ICCD fast imaging. The films, deposited on silicon substrates and formed by the coalescence of particles with nanometric size, have been analyzed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The first steps of the films growth have been studied by Transmission Electron Microscopy. The films deposition has been studied by varying the substrate temperature from 25 to 500°C and the best results have been obtained at room temperature.


Sign in / Sign up

Export Citation Format

Share Document