Structure and Lattice Location of Ge Implanted 4H-SiC

2008 ◽  
Vol 600-603 ◽  
pp. 623-626
Author(s):  
Thomas Kups ◽  
Katja Tonisch ◽  
M. Voelskow ◽  
Wolfgang Skorupa ◽  
Alexander Konkin ◽  
...  

Pseudomorphic 4H-(Si1-xC1-y)Gex+y solid solutions were formed by ion implantation at 600°C and rapid thermal annealing at implanted Ge concentrations below 10%. At higher implantation doses followed by annealing 3C-SiC inclusion and SiGe precipitates are formed. Transmission electron microscopy investigations accompanied with “atomic location by channeling enhanced microanalysis” of the annealed samples revealed an increasing incorporation of Ge on Si lattice sites.

1993 ◽  
Vol 8 (3) ◽  
pp. 467-472 ◽  
Author(s):  
Herbert L. Ho ◽  
Tue Nguyen ◽  
Julius C. Chang ◽  
Brian Machesney ◽  
Peter Geiss

Cobalt (Co)/silicon dioxide (SiO2) reactions during rapid thermal annealing (RTA) in an N2 ambient have been investigated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that islands consisting of Co and the cobalt oxide phase, Co3O4, form during high-temperature anneals (30 s−10 min at 800 °C). After a selective wet etch to remove the islands, groove-like features are produced in the SiO2 layer. The morphologies of the islands and grooves are strikingly similar, which strongly suggest that Co and the underlying SiO2 layer have reacted, most likely to form Co3O4. We propose that small concentrations of O2 are necessary to promote Co/SiO2 interactions.


1992 ◽  
Vol 279 ◽  
Author(s):  
R. Jebasinski ◽  
S. Mantl ◽  
Chr. Dieker ◽  
H. Dederichs ◽  
L. Vescan ◽  
...  

ABSTRACTSynthesis of buried, epitaxial CoSi2 layers in Si1−xGex alloys (x =0.48 and x = 0.09) by 100 and 150 keV Co+ ion implantation and subsequent rapid thermal annealing was studied by X-Ray diffraction, Rutherford backscattering spectroscopy, He ion channeling, Auger Eectron Spectroscopy and Transmission Electron Microscopy. Buried single-crystal CoSi2 layers in the Si0.91Ge0.09 alloy containing ≈ 1 at% Ge were formed. The suicide formation causes an outdiffusion of Ge leading to an increase in the Ge concentration of the adjacent SiGe layers. In contrast, in the Si0.52Ge0.48 alloy no buried suicide layers could be produced.


Author(s):  
Robert C. Rau ◽  
John Moteff

Transmission electron microscopy has been used to study the thermal annealing of radiation induced defect clusters in polycrystalline tungsten. Specimens were taken from cylindrical tensile bars which had been irradiated to a fast (E > 1 MeV) neutron fluence of 4.2 × 1019 n/cm2 at 70°C, annealed for one hour at various temperatures in argon, and tensile tested at 240°C in helium. Foils from both the unstressed button heads and the reduced areas near the fracture were examined.Figure 1 shows typical microstructures in button head foils. In the unannealed condition, Fig. 1(a), a dispersion of fine dot clusters was present. Annealing at 435°C, Fig. 1(b), produced an apparent slight decrease in cluster concentration, but annealing at 740°C, Fig. 1(C), resulted in a noticeable densification of the clusters. Finally, annealing at 900°C and 1040°C, Figs. 1(d) and (e), caused a definite decrease in cluster concentration and led to the formation of resolvable dislocation loops.


2019 ◽  
Vol 963 ◽  
pp. 399-402 ◽  
Author(s):  
Cristiano Calabretta ◽  
Massimo Zimbone ◽  
Eric G. Barbagiovanni ◽  
Simona Boninelli ◽  
Nicolò Piluso ◽  
...  

In this work, we have studied the crystal defectiveness and doping activation subsequent to ion implantation and post-annealing by using various techniques including photoluminescence (PL), Raman spectroscopy and transmission electron microscopy (TEM). The aim of this work was to test the effectiveness of double step annealing to reduce the density of point defects generated during the annealing of a P implanted 4H-SiC epitaxial layer. The outcome of this work evidences that neither the first 1 hour isochronal annealing at 1650 - 1700 - 1750 °C, nor the second one at 1500 °C for times between 4 hour and 14 hour were able to recover a satisfactory crystallinity of the sample and achieve dopant activations exceeding 1%.


1992 ◽  
Vol 279 ◽  
Author(s):  
Erin C. Jones ◽  
Seongil Im ◽  
Nathan W. Cheung

ABSTRACTSub-100 nm P+/N junctions are fabricated by implanting wafers in the plasma immersion ion implantation system (PIII). Ions from SiF4 and BF3 plasmas are implanted at energies from 4–6 keV and 2 keV, respectively. The amorphous region formed by SiF4 im-plantion is shown to be effective in slowing B diffusion during a 10 sec, 1060°C rapid thermal anneal step. Channeling and transmission electron microscopy studies show the recrys-tallized amorphous region is comparable in quality to an unprocessed Si wafer, and the implantation and annealing sequence has no detrimental effects on the physical or electrical characteristics of fabricated devices. Diodes have forward ideality factors of 1.05 to 1.06 and reverse leakage as low as 2 nA/cm2 in the diode bulk at -5 V applied bias.


Sign in / Sign up

Export Citation Format

Share Document