The Effect of Widmanstätten and Equiaxed Microstructures of Ti-6Al-4V on the Oxidation Rate and Creep Behavior

2010 ◽  
Vol 636-637 ◽  
pp. 657-662 ◽  
Author(s):  
Tarcila Sugahara ◽  
Danieli A.P. Reis ◽  
Carlos de Moura Neto ◽  
M.J.R. Barboza ◽  
E.A.C. Perez ◽  
...  

Ti-6Al-4V is currently used in aeronautic and aerospace industry mainly for applications that require resistance at high temperature such as, blades for aircraft turbines and steam turbine blades. The titanium affinity by oxygen is one of main factors that limit the application of their alloys as structural materials at high temperatures. Notable advances have been observed in the development of titanium alloys with the objective of improving the creep properties. Increased oxygen levels are associated with increased microhardness and decreased ductility in titanium. In spite of this, Ti-6Al-4V containing an (+) structure continues to be the workhorse of the titanium industry due to their high specific strength, corrosion resistance, excellent high temperature properties and metallurgical stability. The objective of this work was to study the influence of equiaxed and Widmanstätten microstructures on oxidation rates and creep behavior of the Ti-6Al-4V alloy. The samples were exposed to different conditions of time and temperature to evaluate the oxidation rates. This influence on the oxidation rates was evaluated in terms of weight gain, -case depth and microhardness profile at 500 and 600 °C. Preliminary results indicated that the equiaxed microstructure with average grain size of 10 m exhibits faster oxygen diffusion. Short-term creep tests were performed under constant load in a stress range from 291 to 472 MPa at 500 °C and in a stress range from 97 to 291 MPa at 600 °C. The stress exponents obtained lie in the range from 4.0 to 11.3. The apparent activation energies for steady-state creep determined in the present work were estimated to be 316 and 415 kJ/mol at 291 MPa for the equiaxed and Widmanstätten microstructures, respectively. On the basis, the creep of Ti-6Al-4V is consistent with the lattice diffusion-controlled dislocation climb process in -Ti, for both microstructures. The creep rates of Widmanstätten microstructure were two orders of magnitude lower than of equiaxed microstructure in both temperatures. Apparently, the higher creep resistance with a Widmanstätten microstructure can be attributed to / interfaces acting as obstacles to dislocation motion and to the average grain size of 395 m, which reduces the grain boundary sliding, dislocations sources and the rate of oxygen diffusion along grain boundaries.

2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 645
Author(s):  
Igor Litovchenko ◽  
Sergey Akkuzin ◽  
Nadezhda Polekhina ◽  
Kseniya Almaeva ◽  
Evgeny Moskvichev

The effect of high-temperature thermomechanical treatment on the structural transformations and mechanical properties of metastable austenitic steel of the AISI 321 type is investigated. The features of the grain and defect microstructure of steel were studied by scanning electron microscopy with electron back-scatter diffraction (SEM EBSD) and transmission electron microscopy (TEM). It is shown that in the initial state after solution treatment the average grain size is 18 μm. A high (≈50%) fraction of twin boundaries (annealing twins) was found. In the course of hot (with heating up to 1100 °C) plastic deformation by rolling to moderate strain (e = 1.6, where e is true strain) the grain structure undergoes fragmentation, which gives rise to grain refining (the average grain size is 8 μm). Partial recovery and recrystallization also occur. The fraction of low-angle misorientation boundaries increases up to ≈46%, and that of twin boundaries decreases to ≈25%, compared to the initial state. The yield strength after this treatment reaches up to 477 MPa with elongation-to-failure of 26%. The combination of plastic deformation with heating up to 1100 °C (e = 0.8) and subsequent deformation with heating up to 600 °C (e = 0.7) reduces the average grain size to 1.4 μm and forms submicrocrystalline fragments. The fraction of low-angle misorientation boundaries is ≈60%, and that of twin boundaries is ≈3%. The structural states formed after this treatment provide an increase in the strength properties of steel (yield strength reaches up to 677 MPa) with ductility values of 12%. The mechanisms of plastic deformation and strengthening of metastable austenitic steel under the above high-temperature thermomechanical treatments are discussed.


2012 ◽  
Vol 535-537 ◽  
pp. 1027-1030
Author(s):  
Xiao Hui Cao ◽  
Yu Wang

By using a low frequency inverted torsion pendulum, the high temperature internal friction spectra of Al-0.02wt%Zr and Al-0.1wt%Zr alloys were investigated respectively. In Al-0.02wt%Zr alloy, the conventional grain boundary internal friction peak (Pg) is observed with some small unstable peaks. In Al-0.1wt%Zr alloy, the bamboo peak is observed to appear at the high temperature side of the conventional grain boundary internal friction peak. The conventional grain boundary internal friction peak decreased and moved to higher temperature. The bamboo peak owns an activation energy of 1.75eV. When average grain size exceeded the diameter of samples, Pb strength was reduced and its position was shifted to a lower temperature. Based on the grain boundary sliding model, Pg and Pb peaks were explained. Their dependence on annealing temperature and time was determined by considering the effects of contained Ce atoms and other impurities on the relaxation across grain boundary.


1994 ◽  
Vol 364 ◽  
Author(s):  
C.R. Feng ◽  
K. Sadananda

AbstractThe grain size effect on the creep behavior of hot-pressed monolithic molybdenum disilicide was investigated at 1200°C in a 19–255 MPa stress range. The creep-stress exponent, n, increased from 1 at low stresses to 4 at high stresses. The grain size exponent, p, varied from 0, to 3.5 and to 8 depending on the grain size, the creep-stress exponent, and creep history.


2009 ◽  
Vol 1242 ◽  
Author(s):  
Ramos A. Mitsuo ◽  
Martínez F. Elizabeth ◽  
Negrete S. Jesús ◽  
Torres-Villaseñor G.

ABSTRACTZinalco alloy (Zn-21mass%Al-2mass%Cu) specimens were deformed superplastically with a strain rate (ε) of 1×10-3 s-1 at homologous temperature (TH) of 0.68 (5 ). It was observed neck formation that indicate nonhomegeneus deformation. Grain size and grain boundaries misorientation changes, due superplastic deformation, were characterized by Orientation Imagining Microscopy (OIM) technique. It was studied three regions in deformed specimens and the results were compared with the results for a specimen without deformation. Average grain size of 1 mm was observed in non-deformed specimen and a fraction of 82% for grain boundary misorientation angles with a grain boundaries angles between 15° and 55° was found. For deformed specimen, the fraction of angles between 15° and 55° was decreced to average value of 75% and fractions of low angle (<5°) and high angle (>55°) misorientations were 10% and 15% respectively. The grain size and high fraction of grain boundary misorientation angles between 15° and 55° observed in the alloy without deformation, are favorable for grain rotation and grain boundary sliding (GBS) procces. The changes observed in the fraction of favorable grain boundary angles during superplastic deformation, shown that the superplastic capacity of Zinalco was reduced with the deformation.


2003 ◽  
Vol 788 ◽  
Author(s):  
Laxmikant Saraf ◽  
V. Shutthanandan ◽  
S. Thevuthasan ◽  
C. M. Wang ◽  
K. T. Koch ◽  
...  

ABSTRACTOxygen (18O) diffusivity in sol-gel synthesized nano-crystalline ceria films of average grain size of 3 nm and 7 nm, annealed at 300 °C and 450 °C for one hour respectively is examined by nuclear reaction analysis (NRA). Diffusivity and electrical transport properties measured by a. c. impedance spectroscopy were compared with microcrystalline ceria film of average grain size 38 nm annealed at 900 °C for one hour. Effect of enhanced oxygen diffusion along with reduced ionic transport in nano-crystalline ceria and reduced oxygen diffusion along with enhanced ionic transport in microcrystalline ceria are correlated to long range ordering, grain boundary scattering and defect density. Enhancement in the conductivity with reduction in activation energy from 1 eV to 0.5 eV in the case 4 atom% ytterbium (Yb) doped ceria compared to pure ceria is a result of increased oxygen vacancies taking part in the defect transport.


Author(s):  
K.J. Hollis ◽  
D.P. Butt ◽  
R.G. Castro

Abstract The use of MoSi2 as a high temperature oxidation resistant structural material is hindered by its poor elevated temperature creep resistance. The addition of second phase Si3N4 holds promise for improving the creep properties of MoSi2 without decreasing oxidation resistance. The high temperature impression creep behavior of atmospheric plasma sprayed (APS) and hot pressed (HP) MoSi2/Si3N4 composites was investigated. Values for steady state creep rates, creep activation energies, and creep stress exponents were measured. Grain boundary sliding and splat sliding were found to be the dominant creep mechanisms for the APS samples while grain boundary sliding and plastic deformation were found to be the dominant creep mechanisms for the HP samples.


2013 ◽  
Vol 845 ◽  
pp. 51-55
Author(s):  
Esah Hamzah ◽  
Maureen Mudang ◽  
Muhammad Adil Khattak

Fe-Ni-Cr or known as Incoloy 800H and Haynes HR120 is a solid solution strengthened iron-nickel based superalloy which is extensively used in high temperature and corrosive environment. The effect of grain size in creep strength and creep rate comes through the grain boundary sliding and grain boundaries as barrier mechanism. This paper describes the effect of microstructural variation of Fe-Ni-Cr on the high temperature creep properties. The materials were heat treated at temperature 1050°C and 1200°C followed by water quenching process. The grain size of the samples of Incoloy 800H is 95.47μm for as-received, 122.81μm for solution treated at 1050°C and 380.95μm for solution treated at 1200°C. And the grain size of the samples of Haynes HR120 is 53.45μm for as-received, 61.50μm for solution treated at 1050°C and 158.27μm for solution treated at 1200°C. The creep damage investigation was carried out in the three different grain sizes of Fe-Ni-Cr superalloy at 900°C with stress at 100MPa. Rectangular section forms of specimens are used in the research. In all the tests conducted, the creep curves show primary, secondary and tertiary stages. The creep fracture surface were characterised by using scanning electron microscope. It was found that larger grain size results in lower creep rate for alloy Haynes HR120 but inverse result showed on alloy Incoloy 800H.


2010 ◽  
Vol 638-642 ◽  
pp. 1077-1082 ◽  
Author(s):  
Yasuhiro Yogo ◽  
Kouji Tanaka ◽  
Koukichi Nakanishi

An in-situ observation method for structures at high temperature is developed. The new observation device can reveal grain boundaries at high temperature and enables dynamic observation of these boundaries. Grain growth while maintaining microstructure at high temperature is observed by the new observation device with only one specimen for the entire observation, and grain sizes are quantified. The quantifying process reveals two advantages particular to the use of the new observation device: (1) the ability to quantify grain sizes of specified sizes and (2) the results of average grain size for many grains have significantly less errors because the initial structure is the same for the entire observation and the quantifying process. The new observation device has the function to deform a specimen while observing structures at high temperature, so that enables it to observe dynamic recrystallization of steel. The possibility to observe recrystallization is also shown.


Sign in / Sign up

Export Citation Format

Share Document