Impact Indentation Properties and Interfacial Strength of Ceramic Coatings

2010 ◽  
Vol 654-656 ◽  
pp. 1972-1977
Author(s):  
Yi Wang Bao ◽  
Kun Ming Li ◽  
De Tian Wan ◽  
Xue Qiang Cao

Spherical impact indentation tests with different impact angles (90°, 60°, 45°, and 30°) were carried out to understand the impact resistance and interfacial adhesion of zirconia (ZrO2) ceramic coating on steel and aluminum substrates, respectively. A linear rail with an adjustable impact angle was used to guide the slipping impact head to impact the specimen. It is found that the peak impact force for surface damage decreases but the contact indentation becomes longer with decreasing impact angle. Under almost the same peak impact force, the smaller the impact angle, the higher the impulse. The experimental results indicate that the ZrO2 coating on steel substrate has higher impact resistance than that on the aluminum substrate. The cross bonded test results show that ZrO2 coating on both steel and aluminum substrates exhibit excellent interfacial tensile and shear strength.

2011 ◽  
Vol 492 ◽  
pp. 43-46
Author(s):  
Xiu Fang Wang ◽  
Yi Wang Bao ◽  
Yan Qiu ◽  
Xiao Gen Liu ◽  
Yuan Tian

Spherical impact indentation tests with different impact angles (90°, 60°, 45°, and 30°) was carried out to understand the effect of impact angles on damage degree of cement clinker. A linear rail which can adjust angle to alter impact velocity was used to guide the slipping impact head to impact the sample. The different steel wedge was used to change the impact angle. It is found that the area of damage surface for cement clinker is most serious the peak impact force for surface damage decreases but the contact indentation becomes longer with decreasing impact angle when the impact angle is 45°. Under almost the same impact velocity, the smaller the impact angle, the higher the impulse, the longer contact time, and the peak impact force of 45° is maximum.


2013 ◽  
Vol 357-360 ◽  
pp. 592-596
Author(s):  
Lei Xu ◽  
Yong Wei Wang ◽  
Gui Bo Gao ◽  
Ze Peng Chu ◽  
Kai Yu Wang

In order to further study the impact crushing mechanism of cement clinker, the impact experiment has been carried out at different impact angles. Impact crushing curves, acoustic emission signal and peak impact force and impact fracture morphology have been systematically studied. It is shown that each impact crushing curve includes an inertia peak and an actual impact peak. AE signal directly reflects the crack initiation and propagation during the process of impact experiment. With the increase of impact angle, the average value of peak impact force decreases. The peak impact force value reaches the minimum at 75 °. The experiment results will offer a successful alternative to the low – energy grinding of cement clinker.


2021 ◽  
Vol 60 (1) ◽  
pp. 145-157
Author(s):  
Yi Luo ◽  
Ke Yuan ◽  
Lumin Shen ◽  
Jiefu Liu

Abstract In this study, a series of in-plane hexagonal honeycombs with different Poisson's ratio induced by topological diversity are studied, considering re-entrant, semi-re-entrant and convex cells, respectively. The crushing strength of honeycomb in terms of Poisson's ratio is firstly presented. In the previous research, we have studied the compression performance of honeycomb with different negative Poisson's ratio. In this study, a comparative study on the local impact resistance of different sandwich panels is conducted by considering a spherical projectile with low to medium impact speed. Some critical criteria (i.e. local indentation profile, global deflection, impact force and energy absorption) are adopted to analyze the impact resistance. Finally, an influential mechanism of Poisson's ratio on the local impact resistance of sandwich panel is studied by considering the variation of core strength and post-impact collapse behavior.


2012 ◽  
Vol 193-194 ◽  
pp. 693-701
Author(s):  
Jian Guo Ding ◽  
Zhi Qiao

Because many accidents in China involve a ship in a barge fleet colliding with a bridge pier, determining the impact force of the ship is important. To obtain an equation that describes the impact force of a ship colliding with a bridge pier, a mechanical model of the collision is simplified, and the results from other researchers are applied. Based on the equation, it is found that the impact force of a ship colliding with a bridge pier is not only relevant to the mass,velocity, board thicknesses of the ship, and the impact angle, but also to the remaining velocity coefficient. It has been demonstrated that the result from the proposed equation in this paper is in accordance with that of Gkss’s test in Wosin G theory.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gaosheng Wang ◽  
Yunhou Sun ◽  
Ao Zhang ◽  
Lei Zheng ◽  
Yuzheng Lv ◽  
...  

Based on experiments and finite element analysis, the impact resistance of metal flexible net was studied, which can provide reference for the application of metal flexible net in rock fall protection. The oblique (30 degrees) impact experiment of metal flexible net was carried out, the corresponding finite element (FE) to the experiment was established, and the FE model was verified by simulation results to the experimental tests from three aspects: the deformation characteristics of metal flexible net, the time history curves of impact force on supporting ropes, and the maximum instantaneous impact force on supporting ropes. The FE models of metal flexible nets with inclination angles of 0, 15, 30, 45, 60, and 75 degrees were established, and the impact resistance of metal flexible nets with different inclination angles was analyzed. The research shows that the metal flexible net with proper inclination can bounce the impact rock fall out of the safe area and prevent rock fall falling on the metal flexible net, thus realizing the self-cleaning function. When the inclination angle of the metal flexible net is 15, 30, and 45 degrees, respectively, the bounce effect after impact is better, the remaining height is improved, the protection width is improved obviously, and the impact force is reduced. Herein, the impact force of rock fall decreases most obviously at 45 degrees inclination, and the protective performance is relatively good.


2019 ◽  
Vol 19 (08) ◽  
pp. 1950091 ◽  
Author(s):  
Wuchao Zhao ◽  
Jiang Qian

Reinforced concrete (RC) beams under the impact loading are typically prone to suffer shear failure in the local response phase. In order to enhance the understanding of the mechanical behavior of the RC beams, their dynamic response and shear demand are numerically investigated in this paper. A 3D finite-element model is developed and validated against the experimental data available in the literature. Taking advantage of the above calibrated numerical model, an intensive parametric study is performed to identify the effect of different factors including the impact velocity, impact mass and beam span-to-depth ratio on the impact response of the RC beams. It is found that, due to the inertial effect, a linear relationship exists between the maximum reverse support force and the peak impact force, while negative bending moments also appear in the shear span. In addition, the local response of the RC beams can be divided into a first impact stage and a separation stage. A shear plug is likely to be formed near the impact point at the first impact stage and a shear failure may be triggered near the support by large support forces. Based on the simulation results, simplified methods are proposed for predicting the shear demand for the two failure modes, whereas physical models are also established to illustrate the resistance mechanism of the RC beams at the peak impact force. By comparing with the results of the parametric study, it is concluded that the shear demand of the RC beams under the impact loading can be predicted by the proposed empirical formulas with reasonable accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Xiaohui Liu ◽  
Ping Tang ◽  
Qi Geng ◽  
Xuebin Wang

It has been found that the impact performance of water jets can be changed by its properties, which include pressure, additive, and mode of jet. Thus, an abrasive water jet (AWJ) has been developed as a new method. However, there is little research on the effect of abrasive concentration on the impact performance of abrasive jets. Thus, the SPH method is used to establish an abrasive water jet crushing concrete model to study the effect of abrasive concentration on the impact force, concrete internal energy, abrasive particle distribution, crushing depth, and damage and crushing efficiencies under different concrete compressive strengths and abrasive densities. The results indicate that there is little effect of the abrasive concentration on the peak impact force under different compressive strengths and abrasive densities, while the mean impact force tends to increase linearly with the abrasive concentration. The internal energy of the concrete increases stepwise with the abrasive concentration under different compressive strengths and abrasive densities. The concentration of 10%∼20% is the rapid increasing stage. The crushing depth and damage efficiencies are all maximum at a concentration of 20% under different compressive strengths and abrasive densities. After the concrete was impacted by the water from the water jet, it is divided into rebounding particles and intrusive particles. The more the intrusive particles, the easier the concrete to be crushed and damaged.


2013 ◽  
Vol 440 ◽  
pp. 363-368
Author(s):  
Zahari Taha ◽  
Mohd Hasnun Arif Hassan ◽  
Mohd Azri Aris

The uniqueness of soccer is that the players are allowed to use their head to pass the ball to a teammate of even try to score goal. Studies have shown that heading in soccer might be dangerous to the brain and could lead to brain trauma. There are headgears available for soccer players to protect their head, but studies have proven that currently available headgears are ineffective in reducing the impact caused by a soccer ball. The objective of this study is to test the efficacy of six different types of impact-absorbing materials in reducing the linear impact force from a soccer ball. The soccer ball was dropped from the height of 2.3 m onto a force platform to measure the impact force. A high-speed camera is used to record the motion and the impact duration, and then the coefficient of restitution for each impact was determined. Polyurethane (PU) comb-gel was found to be the most effective material in reducing the peak impact force and impulse compared with other materials. The reduction in peak force was associated with longer impact duration between the soccer ball and the PU comb-gel. However, the coefficient of restitution was reduced by 21.7%, implying that using the gel alone will reduce the speed of the ball after heading, thus reducing the performance of a player wearing it. A combination of PU gel and another stiffer material is suggested and the effectiveness of the composite will be the subject of future investigation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhiyu Zhang ◽  
Qingyun Qian ◽  
Jianguo Wang ◽  
Haoshan Liu ◽  
Ke Liang ◽  
...  

In order to prevent rockfall caused by open-pit blasting on the high and steep slope and ensure that the passive protective net structure has sufficient impact resistance, the mechanism of blasting flyrock causing rockfall is analyzed by using ANSYS/AUTODYN to establish the model of rockfall and passive protective net; at the same time, the influences of protective net size, rockfall kinetic energy, and rockfall size to the protective effect were also studied. The results show that under the condition of the same rockfall kinetic energy and rockfall size, the larger the size of the protective net, the longer the buffer time, and the impact force that net can sustain is greater; by assuming the protective net size and rockfall size to be a constant, the greater the rockfall kinetic energy, the less the interaction time between rock and net, and the greater the impulse force that net can suffer; similarly, by keeping the protective net size and the kinetic energy of rockfall to be a constant, it is found that the larger the size of the rockfall, the larger the interaction area and longer interaction time with the net, and the less net will be disrupted; the protective net used in the mine can intercept the rockfall caused by flyrock in blasting process effectively and ensure the safety of villager at the foot of the mountain.


Sign in / Sign up

Export Citation Format

Share Document