Slide-Bend Forming of Very Thin Metal Sheet Using Slide-Ironing Tool

2010 ◽  
Vol 654-656 ◽  
pp. 342-345
Author(s):  
Ryo Nakagawa ◽  
Takeharu Matsuno ◽  
Yasuo Marumo ◽  
Yuya Hayano ◽  
Li Qun Ruan ◽  
...  

Characteristics of slide-bend forming were investigated. In this process, foil specimens can be bent to various shaped products by indenting and sliding a tool. The effects of the tool indentation load, the foil thickness and the number of slide repetition on the bending angle were examined experimentally for three kinds of foil materials. In addition, the deformation of bent region was examined using a rigid-plastic finite element analysis. Bending angle increased with increasing the indentation load or decreasing the foil thickness. When the number of slide repetition increased, the bending angle increased slightly. The slide repetition can be effective for adjusting bending angle slightly. By sliding a thin edge-shaped tool relative to the foil specimen, bending angle and radius of curvature of specimens can be controlled freely.

Author(s):  
Graeme Roberts ◽  
T. Sriskandarajah ◽  
Gianluca Colonnelli ◽  
Arnaud Roux ◽  
Alan Roy ◽  
...  

A method of carrying out a combined axial walking and lateral buckling assessment for a flexible flowline has been developed using finite element analysis. The method overcomes limitations of screening assessments which could be inconclusive when applied either to a flexible flowline on an undulating seabed with transverse gradients or to one that buckles during hydrotest. Flexible flowlines that were to be surface-laid on a seabed with longitudinal undulations and transverse gradients were assessed using the method. The flexible flowlines were simulated in their as-laid state, and the simulation incorporated hydrotest pressure and the pressure & temperature gradients and transients associated with multiple start-ups. The objective was to quantify the axial walking and lateral slip tendency of the flexible flowlines and the impact that walking might have on the connected end structures. The lateral buckle locations predicted by finite element analysis were compared to a post-hydrotest survey and the radius of curvature from analysis was compared to the minimum bend radius of the flexible.


2014 ◽  
Vol 970 ◽  
pp. 177-184 ◽  
Author(s):  
Wen Chiet Cheong ◽  
Heng Keong Kam ◽  
Chan Chin Wang ◽  
Ying Pio Lim

A computational technique of rigid-plastic finite element method by using the Eulerian meshing method was developed to deal with large deformation problem in metal forming by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. During metal forming process, a workpiece normally undergoes large deformation and causes severe distortion of elements in finite element analysis. The distorted element may lead to instability in numerical calculation and divergence of non-linear solution in finite element analysis. With Eulerian elements, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. Four types of cold forging and sheet metal clinching were conducted to investigate the effectiveness of the presented method. The proposed method is found to be effective by comparing the results on dimension of the final product, material flow behaviour and punch load versus stroke obtained from simulation and experiment.


2020 ◽  
Vol 8 (1) ◽  
pp. 48 ◽  
Author(s):  
Vasileios A. Mamatsopoulos ◽  
Constantine Michailides ◽  
Efstathios E. Theotokoglou

Today, the offshore oil and gas and wind power industry is a heavily regulated segment, and current standards have established restrictions which yield a very limited weather window for submarine cable installations due to experience with cable failure in bad weather. There are two main limiting factors in current practice during cable installation of an S-lay configuration: the design criterion for the minimum allowable radius of curvature in the touch down point and the avoidance of axial compression in the touch down zone. Accurate assessment of the cable integrity during offshore installation has drawn great attention and is related to the existing available analysis and design tools. The main purpose of this paper is to develop and propose a quick and easy custom-made analysis tool, which is able to export similar results as sophisticated finite element analysis software. The developed tool utilizes analytical equations of a catenary-type submarine structure extended to account for varying cross-sections with different weights and/or stiffnesses, as is the real practice. A comparative study is presented in this paper to evaluate the significance for the modeling of the “out of water” cable segment required for accurate safety factor quantification during a laying operation. The efficiency and accuracy of the proposed tool are proven through a validation study comparing the results and the computational effort and time with commercial finite element analysis software. The analysis error in the case of not modeling the “out of water” cable part is significant, especially in shallow water areas, which proves the importance of using the proposed analysis tool.


2013 ◽  
Vol 477-478 ◽  
pp. 1205-1209 ◽  
Author(s):  
Wei Yuan ◽  
Gai Mei Zhang ◽  
Da Zhi Liao ◽  
Jing Liu

UV-shaped corrugated cardboard Fusion V-shaped and U-shaped structure the advantages made, to make up for the lack of V-type and two U-shaped corrugated cardboard, the higher the compressive strength, good elasticity, is widely used UV type corrugated manufacturing corrugated board. But no strict standards for UV-shaped concrete structure of corrugated board size parameter corresponding corrugating roll no uniform size of the corrugated shape, in order to achieve the best elasticity and compressive strength. First, by mathematical methods, the corrugated structure is analyzed, and analysis to facilitate research, to select the 1/4 cycle corrugated. Create multiple vertical auxiliary line level is divided into 10 equal parts, to identify key points in shape between the V-shaped and U-shaped curve, connecting into multiple segments curve. Studied the actual thickness of the corrugated board of 3.8mm, a smaller thickness and therefore a straight line can be connected to each group of the resultant key points simplify the corrugated curve, model 1/4 of a cycle of UV-shaped corrugated first determined, using the symmetry of the model to establish a cycle, 300mm side length of the square created by one cycle of replication, about 38 of the corrugated board corrugated cycle. Use of finite element analysis in ANSYS corrugated structure, including a gradual transition to a simplified model of the 11 U-shaped flute-shaped corrugated cardboard from the V-shaped set of material properties, loads are cloth pressure, research corrugated cardboard stress and strain, i.e., the smaller the radius of curvature of the curve can be obtained along corrugated, the closer the U-shaped, corrugated board having a larger strain, i.e. has good flexibility, consistent with the empirical data to prove the feasibility of this analysis method.


Sign in / Sign up

Export Citation Format

Share Document