The Effect of Temperature on the Microstructure of a Metastable β Ti Alloy

2010 ◽  
Vol 654-656 ◽  
pp. 847-850 ◽  
Author(s):  
Gui Wang ◽  
Wei Qi Wang ◽  
Yu Lan Yang ◽  
Damon Kent ◽  
Matthew S. Dargusch

A metastable β titanium alloy, BTi-6554 (Ti-6Cr-5Mo-5V-4Al) has been developed for structural applications in aircraft because of its high strength, high toughness, and good fatigue properties. This paper reports on the effect of heat treatment on microstructure and microhardness of the alloy. It has been shown that in the as hot rolled condition, the alloy consists of a single β phase. Heat treatment between 450-750°C results in the precipitation of α laths, while exposure to temperatures between 700-800°C results in the gradual transformation of the α phase back to β phase with larger grain sizes resulting from higher heat treatment temperatures.

Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 633 is a chromium-nickel-molybdenum stainless steel whose properties can be changed by heat treatment. It bridges the gap between the austenitic and martensitic stainless steels; that is, it has some of the properties of each. Its uses include high-strength structural applications, corrosion-resistant springs and knife blades. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-389. Producer or source: Stainless steel mills.


Alloy Digest ◽  
1980 ◽  
Vol 29 (5) ◽  

Abstract REPUBLIC X-80-W is a high-strength, low-alloy steel developed to achieve a minimum yield strength of 80,000 psi in the as-hot-rolled condition. It also exhibits good fatigue performance, good bendability, and good weldability. It is available as bars and can be used in various automotive and machinery applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-372. Producer or source: Republic Steel Corporation.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 492
Author(s):  
Jan Foder ◽  
Jaka Burja ◽  
Grega Klančnik

Titanium additions are often used for boron factor and primary austenite grain size control in boron high- and ultra-high-strength alloys. Due to the risk of formation of coarse TiN during solidification the addition of titanium is limited in respect to nitrogen. The risk of coarse nitrides working as non-metallic inclusions formed in the last solidification front can degrade fatigue properties and weldability of the final product. In the presented study three microalloying systems with minor additions were tested, two without any titanium addition, to evaluate grain size evolution and mechanical properties with pre-defined as-cast, hot forging, hot rolling, and off-line heat-treatment strategy to meet demands for S1100QL steel. Microstructure evolution from hot-forged to final martensitic microstructure was observed, continuous cooling transformation diagrams of non-deformed austenite were constructed for off-line heat treatment, and the mechanical properties of Nb and V–Nb were compared to Ti–Nb microalloying system with a limited titanium addition. Using the parameters in the laboratory environment all three micro-alloying systems can provide needed mechanical properties, especially the Ti–Nb system can be successfully replaced with V–Nb having the highest response in tensile properties and still obtaining satisfying toughness of 27 J at –40 °C using Charpy V-notch samples.


2016 ◽  
Vol 258 ◽  
pp. 501-505
Author(s):  
Alice Chlupová ◽  
Milan Heczko ◽  
Karel Obrtlík ◽  
Přemysl Beran ◽  
Tomáš Kruml

Two γ-based TiAl alloys with 7 at.% of Nb, alloyed with 2 at.% Mo and 0.5 at.% C, were studied. A heat treatment leading to very fine lamellar microstructure was applied on both alloys. Microstructure after the heat treatment was described and mechanical properties including fatigue behaviour were measured. The as-received material alloyed with C possesses high strength and very limited ductility, especially at RT. After application of selected heat treatment it becomes even more brittle; therefore, this process could be considered as not appropriate for this alloy. On the contrary, in the case of Mo alloyed material, both strength and ductility are improved by the heat treatment at RT and usual working temperature (~750 °C). Presence of the β phase is responsible for this effect. The selected heat treatment thus can be an alternative for this alloy to other thermomechanical treatments as high temperature forging.


Author(s):  
Matteo Ortolani ◽  
Ettore Anelli ◽  
Paolo Novelli ◽  
Emanuele Paravicini Bagliani

In case of a Weld On Connector’s riser using ASTM A182 F22 forged joints, high strength (SMYS of 80 ksi) steel pipes for sour service (hardness below or equal to 250 HV10) suitable for welding to the connectors are required. Welding is challenging because of the Post Weld Heat Treatment (PWHT) needed to reduce the hardness in the F22 HAZ while maintaining the required strength in the pipe. Theoretical evaluations were performed by means of metallurgical models and a potential solution was identified in grade P22-like steel (2¼ Cr - 1 Mo), with minor modifications with respect to the standard ASTM A335 and supplied in Q&T condition. A trial heat was cast and hot-rolled into pipes. After water quenching, the response to tempering was assessed by means of laboratory heat treatments and subsequent mechanical testing, together with metallurgical examination. Simulated PWHTs were also performed on Q&T material. 80 ksi grade P22 seamless pipes were finally produced and qualification involved mechanical testing before and after simulated PWHT: SMYS of 80 ksi and HV10 ≤ 250 requirements were met. The material also exhibited excellent toughness and resistance to HIC and SSC cracking.


2016 ◽  
Vol 16 (1) ◽  
pp. 55-60 ◽  
Author(s):  
S. Pysz ◽  
E. Czekaj ◽  
R. Żuczek ◽  
M. Maj ◽  
J. Piekło

Abstract The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn) aluminium alloy and estimates possibilities of its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the 7xxx series. For analysis, wrought AlZnMgCu alloy (7075) was selected. Its potential of the estimated as-cast mechanical properties indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue properties support the thesis adopted, while the design works further confirm these assumptions.


2018 ◽  
Vol 204 ◽  
pp. 05001 ◽  
Author(s):  
Yurianto ◽  
Pratikto ◽  
Rudy Sonoko ◽  
Wahyono ◽  
A.P. Bayuseno

Armour steel is a high strength and hardness steel used to protect damage by an object, individual or vehicle from the direct pressure of projectile. This steel used for military and commercials equipment in Indonesia and produced out of hot rolled plate steel made by PT. Krakatau Steel (Persero) Cilegon, Banten, Indonesia. By using quench (with water sprayed) and temper heat treatment produced Quenched & Tempered Steels. The aim of the study to obtain optimum quenching and tempering parameter in hardness and impact energy of HRP Steel. Method of this study by optimizing austenite temperature; austenite holding time; temper temperatures; hardness and impact energy. The result of this study is austenite temperatures 900°C (held 45 minutes) and temper temperatures 125°C (held 45 minutes). Prediction of both hardness and impact energy is 569.96 HVN (536.00 BHN) and 30.50 J respectively.


Author(s):  
P. Viatour ◽  
J. P. Veyt

Samples of zinc-copper-0.15 titanium alloys were examined by transmission electron microscopy as well as with a combined electron microscope- microanalyser apparatus EMMA-4. These samples have copper contents ranging from 0.5 to 2.5 wt. % and were examined in the hot-rolled condition as well as after a 250°C/1h/a. c. heat treatment.


2011 ◽  
Vol 702-703 ◽  
pp. 872-875
Author(s):  
S. Banumathy ◽  
Rajiv Kumar Mandal ◽  
A.K. Singh

This work describes the development of texture during hot rolling of two alloys namely, Ti-12Nb and Ti-16Nb. The alloys have been unidirectionally hot rolled to 80 % reductions at 800°C and air cooled. Both the alloys show the presence of a² (orthorhombic) and small volume fraction of b (bcc) phases in hot rolled condition. The alloy Ti-12Nb exhibit moderate intensity texture while the alloy Ti-16Nb displays quite strong texture. The high overall intensity of texture in alloy Ti-16Nb in 80 % HR specimen can be attributed to the presence of large volume fraction of b phase in comparison to that of the alloy Ti-12Nb. This has been extended to study the textural changes after b solution treatment. This heat treatment consists of two types of phase transformations that are a² ® b ® a² and a² ® b ® a after water quenching and furnace cooling from β phase field.


Sign in / Sign up

Export Citation Format

Share Document