scholarly journals Beta Ti-45Nb and Ti-50Nb Alloys Produced by Powder Metallurgy for Aerospace Application

2010 ◽  
Vol 660-661 ◽  
pp. 405-409 ◽  
Author(s):  
G.V. Martins ◽  
Cosme Roberto Moreira Silva ◽  
C.A. Nunes ◽  
Vladimir J. Trava-Airoldi ◽  
L.A. Borges ◽  
...  

Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti-50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts.

2021 ◽  
Vol 1016 ◽  
pp. 964-970
Author(s):  
Nageswara Rao ◽  
Geetha Manivasagam

Beta titanium alloys have several attractive features; this has resulted in this group of alloys receiving much attention since 1980’s. Among the attributes which distinguish them for their superiority over other structural materials are (i) high strength to which they can be heat treated, resulting in high strength to weight ratio (ii) high degree of hardenability which enables heat treatment in large section sizes to high strength levels (iii) excellent hot and cold workability, making them as competitive sheet materials etc. The standard heat treatment consists of solution treatment in beta or alpha plus beta phase field followed by aging. However, certain aging treatments can render the materials in a state of little or no ductility; the designer has to be aware of this behaviour and has to keep away from such treatments while working with the materials. Such unfavourable aging treatments may adversely affect not only the static properties such as reduction in area and elongation in a tensile test, but also dynamic properties such as impact toughness. Results of fractographic studies are in line with those of mechanical testing. The authors would present the foregoing analysis, based primarily on the wide-ranging researches they carried out on beta titanium alloy Ti15-3 and to some extent data published by researchers on other grades of beta titanium alloys. An attempt is made to explain the mechanisms underlying the embrittlement reactions that take place in beta titanium alloys under non-optimal aging treatments.


2018 ◽  
Vol 58 (3) ◽  
pp. 179 ◽  
Author(s):  
Jaroslav Málek ◽  
František Hnilica ◽  
Sonia Bartáková ◽  
Patrik Míka ◽  
Jaroslav Veselý

The beta-titanium alloys are widely used in many applications (medicine, aerospace industry etc.) due to their superior properties, such as corrosion resistance, biocompatibility and high strength to weight ratio. One of the ways how to increase the strength of those alloys is the addition of oxygen. The oxygen can be present in various forms in the alloy – in a solid solution or in the form of oxides. In this work, the effect of two forms of oxygen (i.e., solid solution and dispersion particles) was studied. Two alloys, one arc melted with different oxygen additions and one prepared via powder metallurgy where the titanium powder was oxidized, were prepared. The microstructure and mechanical properties were studied. A significant increase in strength with increasing the oxygen content in the solid solution has been observed. However, the powder oxidation has almost no effect on a tensile strength probably due to quite large interparticle distances between titanium oxide particles.


2010 ◽  
Vol 660-661 ◽  
pp. 152-157 ◽  
Author(s):  
G.V. Martins ◽  
Cosme Roberto Moreira Silva ◽  
C.A. Nunes ◽  
Vinicius André Rodrigues Henriques ◽  
L.A. Borges ◽  
...  

Alfa/beta titanium alloys have been intensely used for aerospace and biomedical applications. Production of powder metallurgy titanium alloys components may lead to a reduction in the cost of parts, compared to those produced by conventional cast and wrought (ingot metallurgy) processes, because additional working operations (machining, turning, milling, etc.) and material waste can be avoided. In this work, samples of Ti- 10, 15Nb (weight%) alloys were obtained by the blended elemental technique using hydride-dehydride (HDH) powders as raw material, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering carried out in the range 900–1500 °C. These alloys were characterized by X-ray diffractometry for phase composition, scanning electron microscopy for microstructure, Vickers indentation for hardness, Archimedes method for specific mass and resonance ultrasound device for elastic modulus. For the samples sintered at 1500°C it was identified  and  phases. It was observed the influence of the sintering temperatures on the final microstructure. With increasing sintering temperature, microstructure homogenization of the alloy takes place and at 1500 °C this process is complete. The same behavior is observed for densification. Comparing to the Ti6Al4V alloy properties, these alloys hardness (sintered at 1500 °C) are near and elastic modulus are 18% less.


2020 ◽  
Vol 321 ◽  
pp. 11045
Author(s):  
Zachary Kloenne ◽  
Gopal Viswanathan ◽  
Matt Thomas ◽  
M.H. Lorreto ◽  
Hamish L. Fraser

Titanium and titanium alloys are excellent candidates for aerospace applications owing to their high strength to weight ratio. Alpha/beta titanium alloys are used in nearly all sections of the aircraft, including the fuselage, landing gear, and wing. Ti-6Al-4V is the workhorse alloy of the titanium industry, comprising of nearly 60% of total titanium production. TIMETAL® 407, Ti-0.85Al-3.9V-0.25Si-0.25Fe (Ti-407) is an excellent candidate for alloy applications requiring excellent machinability and increased energy absorption. These properties are a result of the alloy’s increased ductility while maintaining moderate levels of strength. In this study, the deformation mechanisms of Ti-407 have been studied at high strain rates using split-Hopkinson bar testing. Utilizing post-mortem characterization, Ti-407 has been shown to deform significantly by ⟨c+a⟩ slip and deformation twinning. The observation of ⟨c+a⟩ slip is in contrast with other studies and will be discussed further.


Lubricants ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 65 ◽  
Author(s):  
Kaur ◽  
Ghadirinejad ◽  
Oskouei

The need for metallic biomaterials will always remain high with their growing demand in joint replacement in the aging population. This creates need for the market and researchers to focus on the development and advancement of the biometals. Desirable characteristics such as excellent biocompatibility, high strength, comparable elastic modulus with bones, good corrosion resistance, and high wear resistance are the significant issues to address for medical implants, particularly load-bearing orthopedic implants. The widespread use of titanium alloys in biomedical implants create a big demand to identify and assess the behavior and performance of these alloys when used in the human body. Being the most commonly used metal alloy in the fabrication of medical implants, mainly because of its good biocompatibility and corrosion resistance together with its high strength to weight ratio, the tribological behavior of these alloys have always been an important subject for study. Titanium alloys with improved wear resistance will of course enhance the longevity of implants in the body. In this paper, tribological performance of titanium alloys (medical grades) is reviewed. Various methods of surface modifications employed for titanium alloys are also discussed in the context of wear behavior.


2011 ◽  
Vol 83 ◽  
pp. 191-196
Author(s):  
Justyna Rozwadowska ◽  
Katsuyuki Kida ◽  
Edson Costa Santos ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
...  

The influence of gas nitriding of commercial pure titanium and Ti-6Al-4V (Ti64) alloy by using a Q-sw laser on the wear loss during rolling contact fatigue is investigated. Despite very good biocompatibility, high strength to weight ratio and corrosion resistance, the tribological properties of titanium alloys are inferior to those of other metal alloys, such as steel. Fretting and wear related aspects become important issues when titanium alloys are used in rolling contact applications. Titanium bearings are employed in applications requiring high strength, light weight, and minimum maintenance (for example, aerospace and defense industries). In this work, a Q-sw laser was used to coat pure commercial titanium and Ti-6Al-4V bearings with TiN in a closed chamber in nitrogen atmosphere. The samples were tested under water by using a thrust-type rolling contact fatigue machine. The microstructure, morphology and crystallographic texture of the layers were observed by laser confocal microscope, scanning electron microscope and electron backscatter diffraction (EBSD). By optimizing the laser processing parameters, such as laser scanning speed, power and beam diameter, thin TiN coats of 1 to 3 mm were produced. The wear loss of the coated samples was at least ten times lower than that of the uncoated bearings.


2015 ◽  
Vol 628 ◽  
pp. 297-302 ◽  
Author(s):  
I.V. Okulov ◽  
H. Wendrock ◽  
A.S. Volegov ◽  
H. Attar ◽  
U. Kühn ◽  
...  

2005 ◽  
Vol 498-499 ◽  
pp. 34-39 ◽  
Author(s):  
Elisa B. Taddei ◽  
Vinicius André Rodrigues Henriques ◽  
Cosme Roberto Moreira Silva ◽  
Carlos Alberto Alves Cairo

Abstract: Titanium and titanium alloys present the highest biocompatibility among metallic biomaterials. The ideal titanium alloy for orthopedic applications should have low modulus of elasticity (near the bone), excellent mechanical strength, high corrosion resistance, formability and no potential toxic elements. Among titanium alloys, the Ti-35Nb-7Zr-5Ta alloy, due its high biocompatibility and lower Young’s modulus is a promising candidate for implants material. The titanium alloys production by powder metallurgy, starting from the elementary powders, is a viable route due at the smaller costs and larger operational facilities. The Ti-35Nb-7Zr-5Ta samples were manufactured by blended elemental method from a sequence of uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 at 1700 °C, in vacuum, under a heating rate of 20 °C×min-1 for 1h. The objective of this work is the analysis of alloy microstructural evolution from the powders dissolution under the increase of the sintering temperature. For the alloy microstructural characterization, scanning electron microscopy and Vickers microhardness measurements, were used. Density was measured by Archimedes method. The samples presented high densification, an homogeneous microstructural development, with complete dissolution of alloying elements in the titanium matrix with the temperature increase.


Sign in / Sign up

Export Citation Format

Share Document