scholarly journals A Comparative Study on the Substructure Evolution and Mechanical Properties of TIMETAL® 407 and Ti-64

2020 ◽  
Vol 321 ◽  
pp. 11045
Author(s):  
Zachary Kloenne ◽  
Gopal Viswanathan ◽  
Matt Thomas ◽  
M.H. Lorreto ◽  
Hamish L. Fraser

Titanium and titanium alloys are excellent candidates for aerospace applications owing to their high strength to weight ratio. Alpha/beta titanium alloys are used in nearly all sections of the aircraft, including the fuselage, landing gear, and wing. Ti-6Al-4V is the workhorse alloy of the titanium industry, comprising of nearly 60% of total titanium production. TIMETAL® 407, Ti-0.85Al-3.9V-0.25Si-0.25Fe (Ti-407) is an excellent candidate for alloy applications requiring excellent machinability and increased energy absorption. These properties are a result of the alloy’s increased ductility while maintaining moderate levels of strength. In this study, the deformation mechanisms of Ti-407 have been studied at high strain rates using split-Hopkinson bar testing. Utilizing post-mortem characterization, Ti-407 has been shown to deform significantly by ⟨c+a⟩ slip and deformation twinning. The observation of ⟨c+a⟩ slip is in contrast with other studies and will be discussed further.


2021 ◽  
Vol 1016 ◽  
pp. 964-970
Author(s):  
Nageswara Rao ◽  
Geetha Manivasagam

Beta titanium alloys have several attractive features; this has resulted in this group of alloys receiving much attention since 1980’s. Among the attributes which distinguish them for their superiority over other structural materials are (i) high strength to which they can be heat treated, resulting in high strength to weight ratio (ii) high degree of hardenability which enables heat treatment in large section sizes to high strength levels (iii) excellent hot and cold workability, making them as competitive sheet materials etc. The standard heat treatment consists of solution treatment in beta or alpha plus beta phase field followed by aging. However, certain aging treatments can render the materials in a state of little or no ductility; the designer has to be aware of this behaviour and has to keep away from such treatments while working with the materials. Such unfavourable aging treatments may adversely affect not only the static properties such as reduction in area and elongation in a tensile test, but also dynamic properties such as impact toughness. Results of fractographic studies are in line with those of mechanical testing. The authors would present the foregoing analysis, based primarily on the wide-ranging researches they carried out on beta titanium alloy Ti15-3 and to some extent data published by researchers on other grades of beta titanium alloys. An attempt is made to explain the mechanisms underlying the embrittlement reactions that take place in beta titanium alloys under non-optimal aging treatments.



2018 ◽  
Vol 183 ◽  
pp. 01053
Author(s):  
Xueyang Li ◽  
Christian C. Roth ◽  
Dirk Mohr

Plasticity and fracture experiments are carried out on flat smooth and notched tensile specimens extracted from DP800 steel sheets. A split Hopkinson pressure bar testing system equipped with a load inversion device is utilized to reach high strain rates. Temperature dependent experiments ranging from 20°C to 300°C are performed at quasi-static strain rates. The material exposes a monotonic strain hardening behaviour with a non-monotonic temperature dependency. The rate-independent material behaviour at room-temperature is described with a non-associated Hill’48 plasticity model and an Swift-Voce strain hardening. A machine learning based model is used multiplicatively to capture the rate and temperature responses. A good agreement between measured and simulated force-displacement curves as well as local surface is obtained. The loading paths to fracture are then extracted to facilitate further development of a temperature dependent fracture initiation model.



2018 ◽  
Vol 58 (3) ◽  
pp. 179 ◽  
Author(s):  
Jaroslav Málek ◽  
František Hnilica ◽  
Sonia Bartáková ◽  
Patrik Míka ◽  
Jaroslav Veselý

The beta-titanium alloys are widely used in many applications (medicine, aerospace industry etc.) due to their superior properties, such as corrosion resistance, biocompatibility and high strength to weight ratio. One of the ways how to increase the strength of those alloys is the addition of oxygen. The oxygen can be present in various forms in the alloy – in a solid solution or in the form of oxides. In this work, the effect of two forms of oxygen (i.e., solid solution and dispersion particles) was studied. Two alloys, one arc melted with different oxygen additions and one prepared via powder metallurgy where the titanium powder was oxidized, were prepared. The microstructure and mechanical properties were studied. A significant increase in strength with increasing the oxygen content in the solid solution has been observed. However, the powder oxidation has almost no effect on a tensile strength probably due to quite large interparticle distances between titanium oxide particles.



2014 ◽  
Vol 626 ◽  
pp. 115-120
Author(s):  
Jun Zhang ◽  
Qi Wei Zhang ◽  
Yang Wang

Titanium alloys have received great interest in the engineering applications requiring light weight and high impact resistance components. It is necessary to understand the mechanical properties of titanium alloys at high strain rates and various temperatures in the structural design. In the present paper, uniaxial tension tests at strain rates of 190, 500 and 1150s-1 and temperatures of 20, 150, 300°C are carried out using a modified split hopkinson tension bar system to investigate the effects of strain rate and temperature on tension behavior of the Ti-6.6Al-3.3Mo-1.8Zr-0.29Si alloy. Experimental results indicate that the alloy has the rate and temperature sensitivity and still keeps high strengths and toughness at temperature up to 300°C under high strain rate. SEM observations reveal that ductile fracture is the major fracture mode when the alloy is deformed at high strain rates.



2020 ◽  
Vol 321 ◽  
pp. 12019
Author(s):  
M. Bodie ◽  
M. Thomas ◽  
A. Ayub

A key design consideration for material selection in the aerospace industry is weight reduction; with excellent strength to weight ratio, high temperature resistance, and fatigue performance, titanium alloys are extensively used. New titanium alloys continue to enhance performance and broaden the range of applications. Titanium Metals Corporation (TIMET) recently developed TIMETAL® 575 (Ti575), a high strength titanium alloy with superior fatigue performance over Ti-6Al-4V, aimed at aerospace applications where these properties are imperative i.e. aerospace turbine discs and blades. [1] [2] This work intends to advance the understanding of the effect of thermal processing of Ti575, by investigating the effect of primary alpha (αp) volume fraction and cooling rate on tensile and fatigue performance in post forged heat-treated microstructures. Microstructural assessment and mechanical performance were completed and are discussed. Three cooling methods from three solution heat-treat temperatures were investigated in this work. The results from these experiments were compared using optical microscopy, electron backscatter diffraction (EBSD), room temperature tensile and high cycle fatigue (HCF) tests.



2010 ◽  
Vol 660-661 ◽  
pp. 405-409 ◽  
Author(s):  
G.V. Martins ◽  
Cosme Roberto Moreira Silva ◽  
C.A. Nunes ◽  
Vladimir J. Trava-Airoldi ◽  
L.A. Borges ◽  
...  

Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti-50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts.



Author(s):  
Neha Kulkarni ◽  
M. Ramulu ◽  
Daniel G. Sanders

Titanium alloys are excellent candidates for aerospace applications due to their high strength-to-weight ratio and corrosion resistance. In the aerospace industry, diffusion bonding (DB) combined with superplastic forming is widely adopted to produce near net shape of titanium alloy structural parts. Of all the titanium alloys, bonding parameters have been well established for producing high-quality bonds only between Ti-6Al-4V and Ti-6Al-4V. The DB of similar alloys has been modeled successfully by many researchers. However, to date the DB time has not been modeled for dissimilar alloys. In the current work, the probabilistic model developed to predict DB time in similar titanium alloys is adapted for prediction of bonding time for Ti-64SG/Ti-6Al-2Sn-4Zr-2Mo SG dissimilar titanium alloys.



2011 ◽  
Vol 26 (4) ◽  
pp. 487-497 ◽  
Author(s):  
K. Elkhodary ◽  
W. Lee ◽  
L.P. Sun ◽  
D.W. Brenner ◽  
M.A. Zikry

Abstract



Alloy Digest ◽  
1997 ◽  
Vol 46 (9) ◽  

Abstract Sandvik Ti-3Al-2.5V Grade 9 titanium-aluminum alloy offers excellent corrosion resistance, especially to chloride media, and has a high strength-to-weight ratio, which is especially suitable for use in aerospace applications. Tubing can be produced having a CSR (contractile strain ratio) that enhances the fatigue endurance limit. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as fatigue. It also includes information on corrosion resistance as well as forming, machining, and joining. Filing Code: TI-109. Producer or source: Sandvik.





Sign in / Sign up

Export Citation Format

Share Document