A Comparative Study on the Substructure Evolution and Mechanical Properties of TIMETAL® 407 and Ti-64
Titanium and titanium alloys are excellent candidates for aerospace applications owing to their high strength to weight ratio. Alpha/beta titanium alloys are used in nearly all sections of the aircraft, including the fuselage, landing gear, and wing. Ti-6Al-4V is the workhorse alloy of the titanium industry, comprising of nearly 60% of total titanium production. TIMETAL® 407, Ti-0.85Al-3.9V-0.25Si-0.25Fe (Ti-407) is an excellent candidate for alloy applications requiring excellent machinability and increased energy absorption. These properties are a result of the alloy’s increased ductility while maintaining moderate levels of strength. In this study, the deformation mechanisms of Ti-407 have been studied at high strain rates using split-Hopkinson bar testing. Utilizing post-mortem characterization, Ti-407 has been shown to deform significantly by ⟨c+a⟩ slip and deformation twinning. The observation of ⟨c+a⟩ slip is in contrast with other studies and will be discussed further.