Photoluminescence of Eu3+-Doped La2Mo2O9 Phosphors

2010 ◽  
Vol 663-665 ◽  
pp. 332-335
Author(s):  
En Guo Wang

Eu3+-doped La2Mo2O9 phosphor was fabricated by sold-state reaction method. The as-prepared samples were characterized by the application of X-ray diffraction (XRD), scanning electron microscopy (SEM), and emission spectra. The effect of the sintering temperature and doping amount of europium ion on the luminescent properties of La2Mo2O9:Eu3+ was investigated. The results show that the luminescent intensity will reach the strongest when the sintering temperature is equal to 1073 K. The Eu3+ doping amounts also have obvious effect on the luminescent properties.

2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Mourad Derbal ◽  
Lakhdar Guerbous ◽  
Ouadjaout Djamel ◽  
Chaminade Jean Pierre ◽  
Mohyddine Kadi-Hanifi

(, 0.5, 1, 5, and 10 at.%) polycrystalline powders blue phosphors were prepared via the classical solid-state reaction method. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation, and emission spectra were used to characterize phosphors. By analyzing the excitation and emission spectra of samples, the result indicates that there exists the energy transfer only from the group to the energy level of ion. On the other hand, the influence of the thulium concentration on the blue emission transition and and the emission of group are investigated.


2017 ◽  
Vol 883 ◽  
pp. 3-6
Author(s):  
Sadia Tasnim Mowri ◽  
Quazi Delowar Hossain ◽  
M.A. Gafur ◽  
Aninda Nafis Ahmed ◽  
Muhammad Shahriar Bashar

(Bi2O3Fe2O3)0.8(Nb2O5)0.2 was synthesized by solid state reaction method. (Bi2O3Fe2O3)0.8(Nb2O5)0.2 was made for the investigation of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Dielectric property. XRD pattern reveals that three phases were obtained with Bismuth Iron Niobium Oxide. SEM elicits that grain size increases with the enhancement of sintering temperature. Dielectric property decreases with the augmentation of frequency.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2016 ◽  
Vol 34 (2) ◽  
pp. 412-417
Author(s):  
Esra Öztürk

AbstractIn this work, aluminate type phosphorescence materials were synthesized via the solid state reaction method and the photoluminescence (PL) properties, including excitation and emission bands, were investigated considering the effect of trace amounts of activator (Eu3+) and co-activator (Dy3+). The estimated thermal behavior of the samples at certain temperatures (> 1000 °C) during heat treatment was characterized by differential thermal analysis (DTA) and thermogravimetry (TG). The possible phase formation was characterized by X-ray diffraction (XRD). The morphological characterization of the samples was performed by scanning electron microscopy (SEM). The PL analysis of three samples showed maximum emission bands at around 610 nm, and additionally near 589 nm, 648 nm and 695 nm. The bands were attributed to typical transitions of the Eu3+ ions.


2011 ◽  
Vol 335-336 ◽  
pp. 699-703
Author(s):  
Hui Hui Tan ◽  
Zhu Xing Tang ◽  
Xia Zhao ◽  
He Zhang

This paper introduces Si2ON2-SiC ceramic fabricated by pressureless sintering method and studies the effect of additives, nitriding temperatures on bulk density, porosity, phase composition and microstructure. It is discovered that additives MgO, CeO2 can increase the densities of Si2ON2-SiC ceramic apparently, and MgO additive has a better effect than CeO2. Nitriding temperature also is an important factor. The bulk density of the specimen with MgO additive reaches maximum at 1.91 g/cm3 when sintered at 1450 °C, and the bulk density of specimen with CeO2 additive is 1.86 g/cm3 at the same condition while the bulk density of the specimen without additive is only 1.75 g/cSuperscript textm3. The X-ray diffraction and scanning electron microscopy of the specimens show that the amount of Si2ON2 increase with the sintering temperature increase. But when the temperature is higher than 1500 °C the Si2ON2 grains will decompose into Si3N4, and Si2ON2 will vanish at 1550 °C


2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


2011 ◽  
Vol 399-401 ◽  
pp. 855-859
Author(s):  
Ting Ting Wu ◽  
Bo Lin Wu

In order to improve the acid resistance and reduce the apparent density of fracturing proppants, TiO2 powder added in the system of BaO-MgO-Al2O3 fracturing proppants were prepared by the technique of pressureless sintering. The properties of the samples were investigated by the measurements of acid solubility, X-ray diffraction and scanning electron microscopy. The results show that the acid solubility of alumina matrix fracturing proppants contenting TiO2 of the 4wt% and BaO/MgO with the ratio of 3:7 is 0.15%. It is an important development in acid resistance performance of fracturing proppants research on laboratory. TiO2 is added to the raw materials and then calcine them to ceramics, which can reduces the sintering temperature, promote the densification and improve acid-resistant property of fracturing proppants.


2021 ◽  
Vol 1016 ◽  
pp. 1790-1796
Author(s):  
Maxim Syrtanov ◽  
Egor Kashkarov ◽  
Tatyana Murashkina ◽  
Nahum Travitzky

This paper describes the influence of sintering temperature on phase composition and microstructure of paper-derived Ti3AlC2 composites fabricated by spark plasma sintering. The composites were sintered at 100 MPa pressure in the temperature range of 1150-1350 °C. Phase composition and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The multiphase structure was observed in the sintered composites consisting of Ti3AlC2, Ti2AlC, TiC and Al2O3 phases. The decomposition of the Ti3AlC2 phase into Ti2AlC and TiC carbide phases was observed with temperature rise. The total content of Ti3AlC2 and Ti2AlC phases was reduced from 84.5 vol.% (1150 °C) to 69.5 vol.% (1350 °C). The density of composites affected by both the content of TiC phase and changes in porosity.


2011 ◽  
Vol 495 ◽  
pp. 190-193 ◽  
Author(s):  
Mehdi Mirzayi ◽  
Mohammad Hoseen Hekmatshoar ◽  
Abdolazim Azimi

Nanometer-sized ZnO powder was synthesized at low decomposing temperature by polyacrylamide-gel method where Acrylamide was used as monomer, and N,N-methylene-bisacrylamide as lattice reagent. The characteristic of powders were studied by X-ray diffraction and scanning electron microscope (SEM). The results indicated uniform distribution of nanoZnO particles. Also electrical properties were investigated at different sintering temperatures of 800, 900 and 1000 ° C. It was observed that increase in sintering temperature, resulted in increase in the grain size of the varistor ceramics. The observed nonlinearity in current – voltage characteristic was explained by the existence of potential barrier at the grain boundaries and lowering of the barriers.


Sign in / Sign up

Export Citation Format

Share Document