Aging Behavior of Cu-Ni-Si Alloy Processed by High-Pressure Torsion

2010 ◽  
Vol 667-669 ◽  
pp. 307-312 ◽  
Author(s):  
Hirotaka Matsunaga ◽  
Z. Horita ◽  
Kazutaka Imamura ◽  
Takanobu Kiss ◽  
Xavier Sauvage

An age-hardenable Cu-2.9%Ni-0.6%Si alloy was subjected to high-pressure torsion. Aging behavior was investigated in terms of hardness, electrical conductivity and microstructural features. Transmission electron microscopy showed that the grain size is refined to ~150 nm and the Vickers microhardness was significantly increased through the HPT process. Aging treatment of the HPT-processed alloy led to a further increase in the hardness. Electrical conductivity is also improved with the aging treatment. It was confirmed that the simultaneous strengthening by grain refinement and fine precipitation is achieved while maintaining high electrical conductivity. Three dimensional atom probe analysis revealed that fine precipitates with sizes of ~20 nm or smaller were formed in the Cu matrix and some particles consist of Ni and Si with no appreciable amount of Cu.

2005 ◽  
Vol 475-479 ◽  
pp. 357-360 ◽  
Author(s):  
Shoichi Hirosawa ◽  
Tatsuo Sato

The formation of nano-scale clusters (nanoclusters) prior to the precipitation of the strengthening b” phase significantly influences two-step aging behavior of Al-Mg-Si alloys. In this work, the existence of two kinds of nanoclusters has been verified in the early stage of phase decomposition by differential scanning calorimetry (DSC) and three-dimensional atom probe (3DAP). Pre-aging treatment at 373K before natural aging was also found to form preferentially one of the two nanoclusters, resulting in the remarkable restoration of age-hardenability at paint-bake temperatures. Such microstructural control by means of optimized heat-treatments; i.e. nanocluster assist processing (NCAP), possesses great potential for enabling Al-Mg-Si alloys to be used more widely as a body-sheet material of automobiles.


2010 ◽  
Vol 667-669 ◽  
pp. 259-264 ◽  
Author(s):  
Daichi Akama ◽  
Z. Horita ◽  
Kenji Matsuda ◽  
Shoichi Hirosawa

This research investigates simultaneous strengthening by grain refinement and fine precipitation in age-hardenable Al-Mg-Si alloys containing an additional element of either Ag, Cu, Pt or Pd. The alloys were solution-treated and processed by high-pressure torsion (HPT) at room temperature under a pressure of 6 GPa. They were aged at a temperature of 373 K for up to a total period of 6.7 hours. Vickers microhardness was measured after selected periods of aging and the microstructures were observed by transmission electron microscopy. It was found that, in all alloys, the grain sizes after HPT were refined to 300-400 nm and there were significant increases in the hardness through the HPT processing. The hardness was further increased by the subsequent ageing treatment, confirming the simultaneous strengthening by grain refinement and fine precipitation. However, the aging behavior was different depending on the alloying compositions.


2011 ◽  
Vol 391-392 ◽  
pp. 385-389 ◽  
Author(s):  
Kun Xia Wei ◽  
Wei Wei ◽  
Igor V. Alexandrov ◽  
Qing Bo Du ◽  
Jing Hu

Microstructure, mechanical properties and electrical conductivity in Cu-0.73%Cr alloy after HPT process and the subsequent aging treatment have been investigated. Ultrafine grained structure with the grain size ~150 nm has been achieved after the HPT and the subsequent aging treatment. Ultrafine grains with some growth twins were preserved in the overaged state, showing high thermal stability. The peak microhardness and tensile strength of Cu-0.73%Cr alloy after the HPT was found at 480 °C for 2 hours. Electrical conductivity shows an increase trend in the different aging states.


2014 ◽  
Vol 783-786 ◽  
pp. 2707-2712 ◽  
Author(s):  
Chihiro Watanabe ◽  
Ryoichi Monzen ◽  
Seiichiro Ii ◽  
Koichi Tsuchiya

The microstructure and aging behavior of Cu-1.8wt%Be-0.2wt%Co alloy specimens processed by high-pressure torsion (HPT) at room temperature (RT) and 150°C after solution treatment have been studied. Application of HPT processing at RT and 150°C under an applied pressure of 5 GPa for 10 revolutions at 1 rpm to alloy specimens (RT-and 150°C-specimen) produces an ultra-fine grained structure with a grain size of 70 nm. The hardnesses of the RT-and 150°C-specimens increase with equivalent strain up to 7 and then saturate at constant values of 400 and 430 Hv, respectively. Annealing the RT-specimen at 150°C for 10 min increases the hardness from 400 to 430 Hv. Transmission electron microscopy observations of the 150°C-specimen and the RT-specimen annealed at 150°C reveal that there are no intragranular and intergranular precipitates. It is suggested that the higher hardness of the 150°C-specimen than the RT-specimen is ascribed to the segregation of Be atoms on dislocations during HPT processing at 150°C. The RT-and 150°C-specimens harden rapidly and exhibit maximum values of hardness at 3 min during aging at 320°C. The increase in the hardness is attributed to the precipitation of finely dispersed G.P. zones.


2006 ◽  
Vol 503-504 ◽  
pp. 433-438 ◽  
Author(s):  
Xavier Sauvage

Concentration gradients resulting from long range diffusion during Severe Plastic Deformation (SPD) have been investigated with the 3D Atom Probe technique (3D-AP). First, in a pearlitic steel where alloying elements (Mn, Si and Cr) are partitioned between the ferrite and carbides in the non-deformed state. After processing by High Pressure Torsion (HPT), they are homogeneously distributed in the nanostructure, indicating that long range diffusion occurred along with the dissolution of carbides. 3D-AP data of a Cu-Fe composite processed by HPT show as well a significant interdiffusion of Cu and Fe, probably promoted by additional vacancies. On the basis of these experimental data, and using the theory described for irradiated materials, vacancy fluxes and vacancy production rates were estimated assuming that new vacancies are continuously produced and eliminated on grain boundaries.


1999 ◽  
Vol 583 ◽  
Author(s):  
Y-C. Chen ◽  
V. Bucklen ◽  
K. Rajan ◽  
C. A. Wang ◽  
G. W. Charache ◽  
...  

AbstractMicrostructures of lattice-matched Ga1−xInxAsySb1−y grown by organometallic vapor phase epitaxy (OMVPE) on (100) 6°→ (111)B GaSb substrates have been examined in detail by transmission electron microscopy. A three-dimensional self-organized composition modulation (SOCM) microstructure was found with an orientation inclined 10 degrees to the surface orientation when viewed in (011) cross-section. The periodicity of the SOCM increased from ˜13 nm to 20 nm, as x increased from 0.1 to 0.2 while the orientation of the SOCM remained the same. The fact that the orientation was not sensitive to the component composition indicated that substrate misorientation plays a major role in deciding this SOCM orientation. This may open fabrication opportunities for three-dimensional natural superlattices by engineering on the substrate misorientation.


2014 ◽  
Vol 49 (19) ◽  
pp. 6550-6557 ◽  
Author(s):  
Jorge M. Cubero-Sesin ◽  
Hiroyuki In ◽  
Makoto Arita ◽  
Hideaki Iwaoka ◽  
Zenji Horita

2008 ◽  
Vol 584-586 ◽  
pp. 591-596 ◽  
Author(s):  
Jakub Čížek ◽  
Ivan Procházka ◽  
Bohumil Smola ◽  
Ivana Stulíková ◽  
Martin Vlach ◽  
...  

Mg-Tb-Nd ternary alloy represents a novel hardenable Mg-based alloy with enhanced strength and favorable creep properties. In the present work we studied microstructure of ultra fine grained (UFG) Mg-Tb-Nd alloy prepared by high pressure torsion (HPT). Lattice defects introduced into the specimen by the severe plastic deformation play a key role in physical properties of UFG specimens. It is known that positron lifetime (PL) spectroscopy is highly sensitive to open volume defects (like vacancies, dislocations, etc.). Therefore, PL spectroscopy is an ideal tool for defect characterizations in the HPT deformed specimens. In the present work we combined PL studies with transmission electron microscopy and microhardness measurements. After detailed characterization of the as-deformed structure, the specimens were step-by-step isochronally annealed and we investigated the development of microstructure with increasing temperature.


2014 ◽  
Vol 794-796 ◽  
pp. 766-771 ◽  
Author(s):  
Jorge M. Cubero-Sesin ◽  
Masashi Watanabe ◽  
Makoto Arita ◽  
Zen Ji Horita

The aging behavior of a cast Al-2 wt.% Fe alloy processed by High-Pressure Torsion (HPT) at room temperature was studied by subsequent aging treatments at 200 °C. Observations by Transmission Electron Microscopy (TEM) revealed that the microstructure after HPT processing reached an ultrafine-grained level with an average grain size in the Al matrix of ~120 nm. The initial eutectic structures were fragmented into particles with sizes of less than 400 nm and partially dissolved in the matrix up to a supersaturated Fe content of ~1% as confirmed by X-Ray Diffraction (XRD) analysis. The peak-age condition was achieved within 0.25 h of aging, which provides the maximum hardness of ~200 HV. Analyses by high-resolution S/TEM show that round particles of Al6Fe with sizes of ~5-10 nm and semi-coherent with the matrix are the dominant precipitates in the peak-aged condition. The hardness increases by aging for 12 h above the as-HPT-processed level of 185 HV. The dominant precipitate phase transforms to Al3Fe in the over-aged condition with a loss of coherency during growth. Enhanced precipitation kinetics was observed because of high density of lattice defects induced by the HPT processing, which were also confirmed by significant recovery in the electrical conductivity of the samples after aging.


Sign in / Sign up

Export Citation Format

Share Document