Residual Stresses in Multilayer Welds with Different Martensitic Transformation Temperatures Analyzed by High-Energy Synchrotron Diffraction

2011 ◽  
Vol 681 ◽  
pp. 37-42 ◽  
Author(s):  
Arne Kromm ◽  
Thomas Kannengiesser ◽  
Jens Altenkirch ◽  
Jens Gibmeier

Low Transformation Temperature (LTT) alloys were developed in order to control the residual stress development by the martensitic phase transformation already during cooling of the weld metal. The positive effect of such LTT alloys on the mitigation of detrimental tensile residual stresses during welding has already been confirmed on the basis of individual laboratory tests. Within the current project it was experimentally investigated whether the phase transformation mechanisms are effective under increased restraint due to multi-pass welding of thicker specimens. The local residual stress depth distribution was analyzed non-destructively for V-type welds processed by arc welding using energy dispersive synchrotron X-ray diffraction (EDXRD). The use of high energy (20 keV to 150 keV) EDXRD allowed for the evaluation of diffraction spectra containing information of all contributing phases. As the investigated LTT alloy contains retained austenite after welding, this phase was also considered for stress analysis. The results show in particular how the constraining effect of increased thickness of the welded plates and additional deposited weld metal influences the level of the residual stresses in near weld surface areas. While the longitudinal residual stresses were reduced in general, in the transition zone from the weld to the heat-affected zone (HAZ) compressive residual stresses were found.

2014 ◽  
Vol 996 ◽  
pp. 469-474 ◽  
Author(s):  
Arne Kromm

Novel Low Transformation Temperature (LTT-) filler materials are specially designed for controlling residual stresses by means of adjusted martensite formation already during welding. Different alloying concepts compete for maximum stress reduction. Two newly developed LTT-alloys were evaluated concerning their potential for residual stress control. For this purpose residual stresses were determined in the surface and also in sub-surface areas of welded joints using X-ray diffraction and Neutron diffraction taking into account local variations of the unstrained lattice parameter.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Vladimir Ivanovitch Monine ◽  
João da Cruz Payão Filho ◽  
Rodrigo Stohler Gonzaga ◽  
Elisa Kimus Dias Passos ◽  
Joaquim Teixeira de Assis

In the present work, residual stresses in nickel-based (Ni 625) superalloy weld metal of a 9%Ni steel-welded joint were measured by X-ray diffraction (XRD). This technique presents some difficulties in performing measurements in coarse and preferentially oriented weld metal microstructures. It is proposed a preliminary surface treatment by rotating steel wire brushing to perform the stress analysis through XRD technique possible for this kind of material. Stress measurements with proposed XRD technique showed that the stress state in Ni 625 weld metal on the outside surface of the welded joint is characterised by tensile stresses in the transverse and longitudinal directions, while compressive transverse and tensile longitudinal residual stresses are developed in the root pass region.


2011 ◽  
Vol 284-286 ◽  
pp. 284-292 ◽  
Author(s):  
Shao Chun Sun ◽  
Zhi Yuan Chen ◽  
Qiang Wu ◽  
De Xin Ma ◽  
Yu Tao Zhao

In locally long fiber reinforced aluminum parts two types residual stresses exist. They are the microscopic residual stress between fiber and matrix and the macroscopic residual stress between reinforced and unreinforced zones. The residual stresses between fiber and matrix in γ-Al2O3 long fiber reinforced aluminum alloy Al-6-1-1 were measured with X-ray Diffraction process as well as simulated with FEM method. The results indicated that the residual stresses in both fiber and matrix were distributed very unequally. The maximum tensile residual stress occurred at the boundary in the matrix and the maximum compressive residual stresses occurred near the boundary in the fiber. The macroscopic residual stresses between the reinforced and unreinforced zones were also measured with borehole method as well as simulated with FEM. It was found that the macroscopic residual stresses at most locations in both the reinforced and unreinforced zones were not harmfully high. However in both reinforced and unreinforced zones there were small sub-zones of very large tensile residual stresses.


2013 ◽  
Vol 772 ◽  
pp. 91-95 ◽  
Author(s):  
Eitan Dabah ◽  
Thomas Kannengiesser ◽  
Dan Eliezer ◽  
Thomas Boellinghaus

The residual stress state in a material has an important role in the mechanism of cracking, induced or assisted by hydrogen. In this contribution, the beamline EDDI in BESSY II instrument in Berlin was used in order to investigate the influence of hydrogen upon the residual stresses state existing in a Supermartensitic stainless steel sample. The method used for investigating the residual stresses is the “sinus square ψ” method. This method involves the usage of high energy X-ray diffraction in order to measure the residual stress state and magnitude. It was found that hydrogen presence has a significant influence upon the magnitude of the residual stresses, as its value decreases with high hydrogen content. This effect is reversible, as hydrogen desorbs from the sample the residual stress magnitude gains its initial value before hydrogen charging.


2011 ◽  
Vol 681 ◽  
pp. 374-380 ◽  
Author(s):  
S. Van Wijk ◽  
Manuel François ◽  
E. Sura ◽  
M. Frabolot

Carbonitriding followed by shot peening is an important industrial process to improve the mechanical properties of components, especially by producing compressive residual stresses. In addition, a high hardness and strength produced by this process enhances the surface properties and leads also a high resistance to fatigue. In this study, shot peening with different parameters have been employed to treat the carbonitrided specimens. The measurements of residual stress and residual austenite were performed by X-ray diffraction. It is shown, with a simple eigenstrain model, that residual austenite transformation under shot impact contributes to a significant fraction of residual stresses. When the material (750 HV) is peened with 800 HV shot, it represents about 50%, the remaining is due to plasticity. When it is peened with 640HV shot, 100% of residual stresses can be explained by austenite transformation.


1999 ◽  
Vol 33 (1-4) ◽  
pp. 291-301 ◽  
Author(s):  
A. Pyzalla ◽  
W. Reimers

The residual stress state and the texture of cold forward extruded full and hollow steel bodies as well as a hot extruded AlSi25Cu4Mg1 tube are studied by X-ray, high energy synchrotron and neutron diffraction. The experimental results reveal that all samples are fibre textured and that there are characteristic distributions of the residual stresses vs. sample diameter. In case of the cold forward extruded samples at low degrees of natural strain, the rod kernel is under compressive residual stresses which are balanced by tensile residual stresses in the outer part of the sample. In contrast to this, the outer part of the hot extruded sample is under compressive macroscopic stresses which are balanced by tensile macroscopic residual stresses in the inner part of the sample.


2008 ◽  
Vol 571-572 ◽  
pp. 295-300 ◽  
Author(s):  
Shu Yan Zhang ◽  
Jordan Schlipf ◽  
Alexander M. Korsunsky

A traditional approach to increasing fatigue resistance of many assemblies involves the creation of regions of compressive residual stress. For example, riveting holes used in modern passenger aircraft are currently subjected to cold expansion using split mandrel tools. The method is relatively expensive and not entirely problem-free. In the present study we consider a method of creating residual stresses around drilled holes referred to as ‘dimpling’, that itself is a variation of a novel technique known as the StressWaveTM process. An experimental procedure is described for the creation of localised regions of significant plastic deformation and residual stress by ‘dimpling’, allowing the production of cold-worked and residually-stressed specimens. The overall aims of this study were to determine thickness-average residual stresses by two different techniques, namely, one destructive technique (Sachs boring) and one non-destructive (high energy X-ray diffraction); and to compare the results. In Sachs boring experiments the variation of strain gauge readings with increasing diameter of the central hole was recorded. A classical elastic-ideally plastic axisymmetric model for plane stress conditions was used in the analysis. Energy dispersive synchrotron X-ray diffraction experiments were performed for non-destructive assessment of residual elastic strains. The two different stress evaluation techniques used in this project led to consistent results. Good correlation was found between the stresses obtained from X-ray diffraction results and those deduced from Sachs boring experiments.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1154
Author(s):  
Diego E. Lozano ◽  
George E. Totten ◽  
Yaneth Bedolla-Gil ◽  
Martha Guerrero-Mata ◽  
Marcel Carpio ◽  
...  

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about −700 MPa were obtained.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 182
Author(s):  
Suvi Santa-aho ◽  
Mika Kiviluoma ◽  
Tuomas Jokiaho ◽  
Tejas Gundgire ◽  
Mari Honkanen ◽  
...  

Additive manufacturing (AM) is a relatively new manufacturing method that can produce complex geometries and optimized shapes with less process steps. In addition to distinct microstructural features, residual stresses and their formation are also inherent to AM components. AM components require several post-processing steps before they are ready for use. To change the traditional manufacturing method to AM, comprehensive characterization is needed to verify the suitability of AM components. On very demanding corrosion atmospheres, the question is does AM lower or eliminate the risk of stress corrosion cracking (SCC) compared to welded 316L components? This work concentrates on post-processing and its influence on the microstructure and surface and subsurface residual stresses. The shot peening (SP) post-processing levelled out the residual stress differences, producing compressive residual stresses of more than −400 MPa in the AM samples and the effect exceeded an over 100 µm layer below the surface. Post-processing caused grain refinement and low-angle boundary formation on the sample surface layer and silicon carbide (SiC) residue adhesion, which should be taken into account when using the components. Immersion tests with four-point-bending in the heated 80 °C magnesium chloride solution for SCC showed no difference between AM and reference samples even after a 674 h immersion.


2020 ◽  
Vol 64 (7) ◽  
pp. 1195-1212
Author(s):  
B. Lennart Josefson ◽  
R. Bisschop ◽  
M. Messaadi ◽  
J. Hantusch

Abstract The aluminothermic welding (ATW) process is the most commonly used welding process for welding rails (track) in the field. The large amount of weld metal added in the ATW process may result in a wide uneven surface zone on the rail head, which may, in rare cases, lead to irregularities in wear and plastic deformation due to high dynamic wheel-rail forces as wheels pass. The present paper studies the introduction of additional forging to the ATW process, intended to reduce the width of the zone affected by the heat input, while not creating a more detrimental residual stress field. Simulations using a novel thermo-mechanical FE model of the ATW process show that addition of a forging pressure leads to a somewhat smaller width of the zone affected by heat. This is also found in a metallurgical examination, showing that this zone (weld metal and heat-affected zone) is fully pearlitic. Only marginal differences are found in the residual stress field when additional forging is applied. In both cases, large tensile residual stresses are found in the rail web at the weld. Additional forging may increase the risk of hot cracking due to an increase in plastic strains within the welded area.


Sign in / Sign up

Export Citation Format

Share Document