Effect of Cold Deformation on Microstructure and Mechanical Properties of Mg-8Gd-3Y-0.5Zr Alloy

2012 ◽  
Vol 706-709 ◽  
pp. 1297-1302
Author(s):  
De Jiang Li ◽  
Xiao Qin Zeng ◽  
Xin Su ◽  
Yan Cai Xie ◽  
Wen Jiang Ding

Pre-cold rolling with the reduction of 15% was employed on Mg-8Gd-3Y-0.5Zr (wt.%) (GW83K) alloy in different initial states: as-extruded (state 1) and extruded followed by annealing (state 2) with the aim to investigate the effects on microstructure and mechanical properties. Microstructure observation revealed that there are more amounts of mechanical twins in the alloy in state 2 than that of the alloy in state 1 after cold rolling, which indicates the different deformation mechanisms. Further investigation through EBSD has elucidated the grain boundary structure and types of twins in the alloys. Pre-cold deformation greatly promotes the age hardening response and the peak aging time at 200°C was found to be nearly 12h for the alloy in both state 1 and state 2, which were about 24h and 80h less than that of their non-deformed counterparts, respectively. Tensile tests at temperatures lower than 250°C showed that the alloy in state 1 has a predominant mechanical property than that of the alloy in state 2, while at 300°C, it displayed a reverse tendency.

2011 ◽  
Vol 284-286 ◽  
pp. 1598-1602 ◽  
Author(s):  
Xiu Li Hou ◽  
Zhan Yi Cao ◽  
Li Dong Wang ◽  
Li Min Wang

The influences of hot forging and ageing treatment on the microstructure and mechanical properties of Mg−8Gd−2Y−1Nd−0.3Zn−0.6Zr (wt.%) alloy have been investigated. The results showed that the grains were significantly refined after hot forging. And the secondary phases in this alloy i.e. Mg5(Gd1-x-yNdxYy) and Mg24(Y1-x-yGdxNdy)5phases were fragmented to small particles due to the large strain during hot forging. Tensile tests revealed that mechanical properties were improved due to grain size refinement. Moreover, the as-forged alloy exhibited remarkable age-hardening response and mechanical properties were further improved by ageing treatment. The ultimate tensile strength, yield strength and elongation of the peak-aged (T5) alloy are 286 MPa, 245 MPa and 5.6 % at room temperature, and 211 MPa, 103 MPa and 19.4 % at 300°C, respectively.


2016 ◽  
Vol 877 ◽  
pp. 437-443
Author(s):  
Jia Wei Jiang ◽  
Man Ping Liu ◽  
Yang Liu ◽  
Kai Tang ◽  
Zi Bo Wang ◽  
...  

Microstructure and mechanical properties of a 6013 Al-Mg-Si-Cu aluminum alloy processed by a combination of equal channel angular pressing (ECAP) and preaging treatment were comparatively investigated using quantitative X-ray diffraction (XRD) measurements, transmission electron microscopy (TEM) and tensile tests. In addition, the precipitation sequences were obtained by thermodynamic calculations using the FactSage software package. Average grain sizes measured by XRD are in the range 211–501 nm while the average dislocation density is in the range 0.35-1.0 × 1014 m-2 in the deformed alloy. TEM analysis reveals that fine needle β′′ precipitates with an average length of 4-10 nm are uniformly dispersed in the preaging ECAPed alloy. The local dislocation density in this sample is as high as 2.2×1017 m-2. The strength is significantly increased in the preaging-ECAPed samples as compared to that of the undeformed counterparts. The highest yield strength among the preaging ECAPed alloys is 322 MPa. This value is about 1.25 times higher than that (258 MPa) of the static peak-aging sample. The high strength in the preaging ECAPed alloy is suggested to be related to grain size strengthening and dislocation strengthening, as well as precipitation strengthening contributed from both preaging treatment and ECAP deformation.


2016 ◽  
Vol 849 ◽  
pp. 376-381
Author(s):  
Ming Long Li ◽  
Yu Jie Geng ◽  
Chen Chen ◽  
Shu Jie Pang ◽  
Tao Zhang

The effects of cold-rolling with different reduction ratios of 70%-90% on the microstructure and mechanical properties of Ti50Zr30Nb10Ta10 alloy were investigated. It was found that the β-Ti phase in this alloy was stable under cold-rolling. With the increase in reduction ratio from 70% to 90%, the microstructure of the alloys evolved from deformed dendrite structure to fiber-like structure. The alloy cold-rolled with the reduction ratio of 70% exhibited optimum mechanical properties of combined high fracture strength of 1012 MPa and plastic strain of 10.1%, which are closely correlated with the dendrite structure of the alloy. It is indicated that the proper cold-rolling is an effective way to improve the mechanical properties of the titanium alloy.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


Sign in / Sign up

Export Citation Format

Share Document