Friction Welding of Titanium to 304 Stainless Steel with Electroplated Nickel Interlayer

2012 ◽  
Vol 710 ◽  
pp. 620-625 ◽  
Author(s):  
Muralimohan Cheepu ◽  
V. Muthupandi ◽  
S. Loganathan

Friction welding is a solid state joining process and it is best suited for joining dissimilar metals. It overcomes the problems associated with the conventional fusion welding processes. The joining of dissimilar metals using fusion welding processes produce brittle intermetallic precipitates at the interface which reduce the mechanical strength. Various aerospace, nuclear, chemical and cryogenic applications demand joints between titanium and stainless steel. Direct joining of these metals results in brittle intermetallics like FeTi and FexTiy, at the weld interface, which is to be avoided in order to achieve improved properties of the joints. Present study involves joining of two industrially important dissimilar metals such as commercially pure titanium and 304 stainless steel by friction welding with electroplated nickel coating as interlayer that can prevent the brittle intermetallic formation. Microstructural details of the interfaces of the friction welded joints were studied by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) technique and X-ray diffraction (XRD). Microhardness survey was carried out across the joints and tensile test was conducted to assess the mechanical properties of the joints. Fractography studies were carried out on the fracture surfaces of the joints to know the region of failure as well as the mode of failure. XRD patterns indicate the presence of intermetallics in the friction welded joints. These two metals were successfully joined by having electroplated nickel as interlayer. The weld interface on titanium side contained Ti-Ni intermetallics layers, in which the hardness of the weld metal showing the higher value than the base metals. Fractography study conducted on the fracture surfaces created due to pull test reveals that the failure is by brittle fracture and occurred at the intermetallics layer. The maximum strength of the joints achieved for 30 μm and 50 μm thick electroplated nickel interlayers are 242 MPa and 308 MPa, respectively.

2013 ◽  
Vol 794 ◽  
pp. 351-357 ◽  
Author(s):  
C.H. Muralimohan ◽  
V. Muthupandi

Dissimilar metal joints of stainless steel to titanium find extensive industrial applications especially in the nuclear industry. However, it is well known that fusion welding of stainless steel to titanium is difficult because of the formation of brittle intermetallic compounds and the associated problems. To avoid this, welding processes or techniques with high reliability and productivity for these dissimilar materials are demanded. In the present work, joints comprising of 304 stainless steel and commercially pure titanium were produced by friction welding using nickel as interlayer. Investigation on the mechanical properties of the joints shows the occurrence of highest hardness value at the interface of titanium and nickel interlayer. X-ray diffraction studies confirmed the presence of various types of intermetallic compounds at the interface of the welded joint. The tensile strength of the joint varies with the thickness of nickel interlayer used. Joints having maximum strength equals to 72% of that of titanium base metal could be produced. In all the joints, tensile failure occurred at Ti-Ni interface due to the presence of the intermetallic compounds at this interface. Fracture surface analysis reveals that the tensile fracture path is along the intermixing zone of titanium and nickel interlayer.


2011 ◽  
Vol 314-316 ◽  
pp. 1034-1037 ◽  
Author(s):  
Min Ke Sun ◽  
Dong Sheng Zhao ◽  
Yu Jun Liu

Dissimilar metal welded joints are widely used in engineering structures nowadays. Among the various types of material combinations, dissimilar welded joints of carbon steel and austenitic stainless steel are very common in shipbuilding, nuclear and chemical industries. In this study the finite element software MSC.Marc is employed to calculate the welding residual stresses in dissimilar butt-welded Q235 steel and 304 stainless steel pipes with different welding currents. The calculation results indicate that the welding residual stresses present asymmetric distribution, peaks of residual stresses on inner surface tend to be in 304 stainless side which can be significant higher than the yield stresses of parent metals. Changing in welding current does not have a significant effect on the peak of stress in weld center line.


2012 ◽  
Vol 24 (8) ◽  
pp. 962-972 ◽  
Author(s):  
Gordon Fox ◽  
Ryan Hahnlen ◽  
Marcelo J Dapino

Shape memory nickel–titanium is attractive for lightweight actuators as it can generate large blocking stresses and high recovery strains through solid-state operation. A key challenge is the integration of the nickel–titanium components into systems; this alloy is difficult and expensive to machine and challenging to weld to itself and other materials. In this research, we join nickel–titanium and 304 stainless steel tubes of 9.53 mm (0.375 in) in diameter through tungsten inert gas welding. By joining nickel–titanium to a common structural material that is easily machined and readily welded to other materials, the system integration challenges are greatly reduced. The joints prepared in this study were subjected to optical microscopic inspection, hardness mapping, energy dispersive X-ray spectroscopy, mechanical testing, and failure surface analysis via scanning electron microscopy. The affected zone from welding is approximately 125 µm (0.005 in) wide including partially mixed zones with a maximum hardness of 817 HV and a possible heat-affected zone of 1–2 µm (39–79 µin) wide. The maximum average ultimate torsional strength is 415 MPa (60.2 x 103 lbf/in2). Implementation of this joining method is demonstrated in the construction of a solid-state torsional actuator that can lift a weight of 2.3 kg (5 lb) to a distance of 610 mm (24 in). The laser and TIG welding processes are compared.


2014 ◽  
Vol 2 (1) ◽  
pp. 59-76
Author(s):  
Abdullah Daie'e Assi

This research deals with the choice of the suitable filler metal to weld the similar and dissimilar metals (Low carbon steel type A516 & Austenitic stainless steel type 316L) under constant conditions such as, plate thickness (6 mm), voltage (78 v), current (120 A), straight polarity. This research deals with three major parts. The first parts Four types of electrodes were used for welding of dissimilar metals (C.St A516 And St.St 316L) two from mild steel (E7018, E6013) and other two from austenitic stainless steel (E309L, E308L) various inspection were carried out include (Visual T., X-ray T., δ- Ferrite phase T., and Microstructures T.) and mechanical testing include (tensile T., bending T. and micro hardness T.) The second parts done by used the same parameters to welding similar metals from (C.St A516) Or (St.St 316L). The third parts deals with welding of dissimilar weldments (C.St And St.St) by two processes, gas tungsten are welding (GTAW) and shielded metal are welding (SMAW).        The results indicated that the spread of carbon from low carbon steel to the welding zone in the case of welding stainless steel elect pole (E309L) led to Configuration Carbides and then high hardness the link to high values ​​compared with the base metal. In most similar weldments showed hardness of the welding area is  higher than the hardness of the base metal. The electrode (E309L) is the most suitable to welding dissimilar metals from (C.St A516 With St.St 316L). The results also showed that the method of welding (GTAW) were better than the method of welding (SMAW) in dissimilar welded joints (St.St 316L with C.St A516) in terms of irregular shape and integrity of the welding defects, as well as characterized this weldments the high-lift and resistance ductility good when using the welding conditions are similar.


2016 ◽  
Vol 23 (03) ◽  
pp. 1650013 ◽  
Author(s):  
MOHAMMED ASIF M. ◽  
KULKARNI ANUP SHRIKRISHNA ◽  
P. SATHIYA

The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080[Formula: see text]C, 1150[Formula: see text]C and 1200[Formula: see text]C with 15[Formula: see text]min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080[Formula: see text]C followed by water quench and at 1150[Formula: see text]C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov–Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100[Formula: see text]C and that for oil quenching was around 1140[Formula: see text]C. The pit depths were found to be in the range of 100[Formula: see text]nm and width of 1.5–2[Formula: see text][Formula: see text]m.


2000 ◽  
Vol 42 (8) ◽  
pp. 807-812 ◽  
Author(s):  
S Fukumoto ◽  
H Tsubakino ◽  
K Okita ◽  
M Aritoshi ◽  
T Tomita

Author(s):  
Sorush Niknamian

Nowadays, welding of dissimilar metals has become significant. In this process, a number of parameters including but not limited to type of electrode, amount of current, preheating temperature, and welding rate, that are essential to be taken into account. For welding of dissimilar metals, various methods are exploited including shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW). The stimulus for studying welding of 304L stainless steel to pure copper originates from difficulties in joining copper parts of           water-circulating molds to their steel part. In this study, the welding is performed on plates of steel and copper using SMAW, GTAW and combined SMAW+GTAW welding methods with    EL-CuMn2, ENiCrMo-6 and ER70S-4 electrodes. In order to investigate the microstructure and corrosion resistance behavior of welds, the samples were characterized using microstructural study and polarization test. It was observed that among all four welding methods, only combined SMAW+GTAW welding process resulted in successful joint between 304L stainless steel and copper. Both obtained joints possess suitable microstructure and corrosion resistance.


Author(s):  
Totok Suwanda ◽  
Rudy Soenoko ◽  
Yudy Surya Irawan ◽  
Moch. Agus Choiron

This article explains the use of the response surface method to produce the optimum tensile strength for the joining of dissimilar metals with the continuous drive friction welding method. The joining of dissimilar metals is one of the biggest challenges in providing industrial applications. Continuous drive friction welding has been extensively used as one of the important solid-state welding processes. In this study, the optimization of the friction welding process parameters is established to achieve the maximum tensile strength in AA6061 and AISI304 dissimilar joints via the response surface methodology. The effect of continuous drive friction welding parameters, which are friction pressure, friction time, upset pressure, and upset time, are investigated using response surface analysis. The design matrix factors are set as 27 experiments based on Box-Behnken. The 3D surface and the contour is plotted for this model to accomplish the tensile strength optimization. The optimization model of the tensile strength was verified by conducting experiments on the optimum values of the parameters based on the experimental data results. It can be denoted that the optimum process parameters settings were friction pressure = 25 MPa, friction time = 6 seconds, upset pressure = 140 MPa, and upset time = 8 seconds, which would result in a maximum tensile strength of 228.57 MPa.


Sign in / Sign up

Export Citation Format

Share Document