Experimental Study on Heat Yreatment Processing of a New Low Cost Titanium Alloy Used in Aviation Field

2013 ◽  
Vol 747-748 ◽  
pp. 919-925 ◽  
Author(s):  
Guo Qiang Shang ◽  
Xin Nan Wang ◽  
Yue Fei ◽  
Jun Li ◽  
Zhi Shou Zhu ◽  
...  

The effect of common solution treatment, two-step solution treatment and aging, solution treatment and aging (STA) on the microstructure and mechanical properties of a new low cost titanium alloy used in aviation field were investigated by optical microscope (OM), scanning electron microscopy (SEM) and tensile test. The results show that a typical equiaxed structure can be obtained by common solution treatment leading to a good combination of strength and plasticity. Besides, solution heat treating in the β region and subsequently ageing at a low temperature results in a significant increase in mechanical strength and a little decrease in plasticity. When the solution temperature is at α+β two-phase region (895), the low cost titanium alloy acquires the best combination of strength and ductility.

2015 ◽  
Vol 782 ◽  
pp. 71-76
Author(s):  
Li Rui Huo ◽  
Qun Bo Fan ◽  
Rui Hua Gao ◽  
Fu Chi Wang

As a new material, the microstructure of β20C titanium alloy can match well with property by forging process. However, the microstructure of billet is inhomogeneous in actual forging. For ensuring microstructures homogenization, two forging processes are designed. Process 1 is large deformation above the phase transition (T=1050°C, 70% deformation) and small deformation in two-phase region (T=860°C~890°C, ≤40% deformation). Process 2 is small deformation above the phase transition (T=1050°C, 40% deformation) and large deformation in two-phase region (T=860°C~890°C, 50%~60% deformation). Then microstructures are observed and dynamic compressive strength and the critical fracture strain of samples are test after solid-solution treatment. It turns out that the homogeneity of microstructure of process 2 is improved by heat treatment. The microstructure is lamellar microstructure with 1650MPa dynamic strength and 15% critical fracture strain through “Process 1 + 840°C 1h/FC” while the microstructure is equiaxed microstructure with 1650MPa dynamic strength and 20% critical fracture strain through “Process 2 + 840°C 1h/FC”. In conclusion, the microstructure of large deformation in two-phase region can accumulate more deformation energy which is beneficial for dynamic recrystallization.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012081
Author(s):  
Zheng Luo ◽  
Zhouming Tan ◽  
Yanguang Wei ◽  
Xuefei Cui ◽  
Haiming Tao

Abstract This paper studies the effect of solution temperature on the microstructure and mechanical properties of TB10 titanium alloy bars. The results show that the microstructure is composed of β phase and primary α phase (αp) when solution treatment is below the phase transition temperature. With the increase of the solution temperature, the β phase grain size in the microstructure increases, the thickness of the grain boundary decreases, and the number and size of the αp phase decrease, so that the strength of the alloy decreases and the plasticity increases. When the solution treatment temperature is 800°C, the reticulated grain boundary αp phase causes the plasticity to drop rapidly. When the solution treatment temperature is above the phase transition point, as the solution temperature rises, the β phase re-nucleates and grows, the grain size increases, the number of αp phase decreases. The super-cooled β phase grains induce martensite phenomenon due to stress, which eventually causes the strength and plasticity to decrease.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3798
Author(s):  
Meng Sun ◽  
Dong Li ◽  
Yanhua Guo ◽  
Ying Wang ◽  
Yuecheng Dong ◽  
...  

In order to reduce the cost of titanium alloys, a novel low-cost Ti-3Al-5Mo-4Cr-2Zr-1Fe (Ti-35421) titanium alloy was developed. The influence of heat treatment on the microstructure characteristics and mechanical properties of the new alloy was investigated. The results showed that the microstructure of Ti-35421 alloy consists of a lamina primary α phase and a β phase after the solution treatment at the α + β region. After aging treatment, the secondary α phase precipitates in the β matrix. The precipitation of the secondary α phase is closely related to heat treatment parameters—the volume fraction and size of the secondary α phase increase when increasing the solution temperature or aging time. At the same solution temperature and aging time, the secondary α phase became coarser, and the fraction decreased with increasing aging temperature. When Ti-35421 alloy was solution-treated at the α + β region for 1 h with aging surpassing 8 h, the tensile strength, yield strength, elongation and reduction of the area were achieved in a range of 1172.7–1459.0 MPa, 1135.1–1355.5 MPa, 5.2–11.8%, and 7.5–32.5%, respectively. The novel low-cost Ti-35421 alloy maintains mechanical properties and reduces the cost of materials compared with Ti-3Al-5Mo-5V-4Cr-2Zr (Ti-B19) alloy.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1630
Author(s):  
Ke Wang ◽  
Yongqing Zhao ◽  
Weiju Jia ◽  
Silan Li ◽  
Chengliang Mao

Isothermal compressions of as-cast near-α Ti90 titanium alloy were carried out on a Gleeble-3800 simulator in the temperature range of 860–1040 °C and strain rates of 0.001–10 s−1. The deformation behavior of the alloy was characterized based on the analyses of flow curves, the constructions of Arrhenius constitutive equations and the processing map. The microstructure evolution of the alloy was analyzed using the optical microscopic (OM), transmission electron microscope (TEM), and electron backscatter diffraction (EBSD) techniques. The results show that the kinking and dynamic globularization of α lamellae is the dominant mechanism of flow softening in the α + β two-phase region, while the dynamic recovery (DRV) of β phase is the main softening mechanism in the β single-phase region. The dynamic globularization of α lamellae is mainly caused by the wedging of β phase into α laths and the shearing of α laths due to imposed shear strain. The activation of prismatic and pyramidal slip is found to be easier than that of basic slip during the deformation in the α + β two-phase region. In addition, the Schmid factor of equiaxial α is different from that of lamellar α, which also varies with the angle between its geometric orientation and compression direction (CD). Based on the processing map, the low η region within the temperature range of 860–918 °C with a strain rate range of 0.318–10 s−1 should be avoided to prevent the occurrence of deformation instability.


2020 ◽  
Vol 993 ◽  
pp. 321-326
Author(s):  
Hong Wei Liu ◽  
Kai Wen ◽  
Xi Wu Li ◽  
Zhi Hui Li ◽  
Li Zhen Yan ◽  
...  

The second phase dissolution of Al-9.2Zn-2.0Mg-1.9Cu alloy conducted by various temperatures of 2h was researched with the help of optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), electrical conductivity and differential scanning calorimetry (DSC) analysis. The results gave rise to the second phase existence of Mg(Zn,Cu,Al)2 and Fe-containing phases in the as-extruded alloy. When the alloy solution treated with a temperature varied from 450°C to 470°C, a small quantity of Mg(Zn,Cu,Al)2 phase still existed in the alloy while its content exhibited a decrement trend with the solution temperature rose. For the alloy solution treated at a temperature of 475°C, Mg(Zn,Cu,Al)2 phase dissolved into the matrix completely while Fe-containing phase still remained. The electrical conductivity of quenched alloy decrease with the solution temperature increase and reached a minimum value at 470°C, and then rose slightly for the solution temperature of 475°C.


MRS Advances ◽  
2019 ◽  
Vol 4 (5-6) ◽  
pp. 271-276 ◽  
Author(s):  
Rui Zhou ◽  
Xuan Wang ◽  
Cheng Liu ◽  
Derek O. Northwood

ABSTRACTCompared with traditional stainless steels, high nitrogen stainless steels (HNSS), have been widely used due to their high strength, toughness along with excellent corrosion resistance and low cost, formed by partial replacement of Ni (austenite-forming element) by N. The evolution of the microstructure of a Cr19Mn19Mo2N0.7 stainless steel is investigated after solution treatment at 1010, 1060, 1200 or 1250°C for 30min. A complex multilayer structure has been found under a negative pressure vacuum. A white ferritic layer at the surface is formed, and a subsurface layer with full austenitic structure and a bulk microstructure comprising of austenite and ferrite are detected. With increasing solution temperature, the surface layer thickness increases. The formation of the multilayer structure is attributed to an outward diffusion, a diffusive retardation and an abnormal accumulation of nitrogen during solution treatment.


2009 ◽  
Vol 61 (4) ◽  
pp. 419-422 ◽  
Author(s):  
Behrang Poorganji ◽  
Makoto Yamaguchi ◽  
Yoshio Itsumi ◽  
Katsushi Matsumoto ◽  
Tomofumi Tanaka ◽  
...  

2016 ◽  
Vol 687 ◽  
pp. 3-10 ◽  
Author(s):  
Maciej Motyka ◽  
Jan Sieniawski ◽  
Waldemar Ziaja

Phase constituent morphology in microstructure of two-phase α+β titanium alloys is determined by conditions of thermomechanical processing consisting of sequential heat treatment and plastic deformation operations. Results of previous research indicate that particularly solution treatment preceding plastic deformation significantly changes α-phase morphology and determines hot plasticity of titanium alloys. In the paper thermomechanical processing composed of β solution treatment and following hot forging of Ti-6Al-4V titanium alloy was analysed. Development of martensite plates during heating up and hot deformation was evaluated. Microscopic examinations revealed that elongated and deformed α-phase grains were fragmented and transformed into globular ones. Significant influence of martensitic transformation on elongation coefficient of α-phase grains after plastic deformation was confirmed. Based on results of elevated temperature tensile tests it was established that α-phase morphology in examined two-phase α+β titanium alloy, developed in the thermomechanical processing, can enhance their hot plasticity – especially in the range of low strain rates.


2021 ◽  
Vol 1032 ◽  
pp. 152-156
Author(s):  
Peng Lei ◽  
Shu Cheng Dong ◽  
Guang Yu Ma ◽  
Tuo Cheng ◽  
O.M. Ivasishin

TC16 titanium alloy is a martensite α+β two-phase high strength titanium alloy, which can improve its structure and enhance properties through heat treatment. Effect of annealing process on microstructure and tensile properties of TC16 titanium alloy was investigated using optical microscope, scanning electron microscope and universe tensile test machine. The results show that when annealed at 720°C for 4h then furnace cooling to ambient temperature, the tensile strength of the TC16 alloy reaches nearly 900MPa,the elongation reaches 19.6% and the reduction of area reaches 65%, which present a good comprehensive performance.


1995 ◽  
Vol 68 (1) ◽  
pp. 158-166 ◽  
Author(s):  
Tsunehiro Yamamoto ◽  
Thein Kyu

Abstract Thermally induced phase separation in a mixture of telechelic epoxy terminated polybutadiene (ETPB) and maltene has been studied by means of time-resolved light scattering and optical microscopy. Maltene, consisting of various hydrocarbon derivatives, was extracted from asphalt with n-heptane and isolated by centrifugation. The cloud point studies of the ETPB/maltene mixture showed an upper critical solution temperature (UCST) which is thermally reversible. Several deep temperature quench experiments were conducted at an off-critical composition (27/73 ETPB/maltene) from a single phase (80°C) to a two-phase region (27, 29, 31 and 33 °C). The time-evolution of the structure factor for the late stage of spinodal decomposition (SD) was analyzed in the framework of nonlinear and dynamical scaling laws. The reverse quench experiments were also undertaken to elucidate the phase dissolution process.


Sign in / Sign up

Export Citation Format

Share Document