A Methodology for Evaluation of Life Fraction Using Cr-Mo Steel under Creep Conditions

2013 ◽  
Vol 758 ◽  
pp. 57-63
Author(s):  
Marcelo A. da Silva ◽  
José Claudio G. Teixeira ◽  
Ari Sauer Guimarães ◽  
Ivani S. Bott ◽  
Hector R.M. Costa

The quantification methodology used to predict the residual life of Cr-Mo steel was microstructure/life fraction correlation under creep conditions. Microstructural evolution has been correlated with accelerated creep testing progress during testing at constant load and a temperature of 600°C, as well as with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Experimental results from TEM revealed six distinct stages, which were directly related to the life fraction values obtained. However, in the case of MEV, five stages were found. This difference is likely due to the better analysis possible via TEM of both microstructural evolution and types of carbides formed during the creep process. In addition, an evolution map is proposed to allow for easy interpretation of the relationship between microstructural characteristics and life fraction.

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 454 ◽  
Author(s):  
Tian Tian ◽  
Changchun Ge ◽  
Xinggang Li ◽  
Zhibo Hao ◽  
Shiqing Peng ◽  
...  

A new third generation nickel-based powder metallurgy (PM) superalloy, designated as FGH100L, was prepared by spray forming. The effects of hot isostatic pressing (HIP) and isothermal forging (IF) processes on the creep performance, microstructure, fracture, and creep deformation mechanism of the alloy were studied. The microstructure and fracture were characterized by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The coupled HIP and IF process improved the creep performance of the alloy under the creep condition of 705 °C/897 MPa. As for both the HIPed and IFed alloys, the creep process was dominated by the accumulation of dislocations and stacking faults, cutting through γ’ precipitates. The microstructural evolution was the main factor affecting the creep performance, which mainly manifested as coarsening, splitting, and morphology change of γ’ precipitates. Both the creep fractures of the HIPed and IFed alloys indicated intergranular fracture characteristics. In the former, wedge-shaped cracks usually initiated at the trigeminal intersection of the grain boundaries, while in the latter, cavity cracks generate more easily around the serrated curved grain boundary and carbides.


Author(s):  
M. J. Carr ◽  
J. F. Shewbridge ◽  
T. O. Wilford

Strong solid state bonds are routinely produced between physical vapor deposited (PVD) silver coatings deposited on sputter cleaned surfaces of two dissimilar metal parts. The low temperature (200°C) and short time (10 min) used in the bonding cycle are advantageous from the standpoint of productivity and dimensional control. These conditions unfortunately produce no microstructural changes at or near the interface that are detectable by optical, SEM, or microprobe examination. Microstructural problems arising at these interfaces could therefore easily go undetected by these techniques. TEM analysis has not been previously applied to this problem because of the difficulty in specimen preparation. The purpose of this paper is to describe our technique for preparing specimens from solid state bonds and to present our initial observations of the microstructural details of such bonds.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


2020 ◽  
Vol 21 (9) ◽  
pp. 3119 ◽  
Author(s):  
Jeroen Wagemans ◽  
Jessica Tsonos ◽  
Dominique Holtappels ◽  
Kiandro Fortuna ◽  
Jean-Pierre Hernalsteens ◽  
...  

The phAPEC6 genome encodes 551 predicted gene products, with the vast majority (83%) of unknown function. Of these, 62 have been identified as virion-associated proteins by mass spectrometry (ESI-MS/MS), including the major capsid protein (Gp225; present in 1620 copies), which shows a HK97 capsid protein-based fold. Cryo-electron microscopy experiments showed that the 350-kbp DNA molecule of Escherichia coli virus phAPEC6 is packaged in at least 15 concentric layers in the phage capsid. A capsid inner body rod is also present, measuring about 91 nm by 18 nm and oriented along the portal axis. In the phAPEC6 contractile tail, 25 hexameric stacked rings can be distinguished, built of the identified tail sheath protein (Gp277). Cryo-EM reconstruction reveals the base of the unique hairy fibers observed during an initial transmission electron microscopy (TEM) analysis. These very unusual filaments are ordered at three annular positions along the contractile sheath, as well as around the capsid, and may be involved in host interaction.


2010 ◽  
Vol 16 (6) ◽  
pp. 662-669 ◽  
Author(s):  
S. Simões ◽  
F. Viana ◽  
A.S. Ramos ◽  
M.T. Vieira ◽  
M.F. Vieira

AbstractReactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


1990 ◽  
Vol 202 ◽  
Author(s):  
J. A. Barnard ◽  
E. Haftek ◽  
A. Waknis ◽  
M. Tan

ABSTRACTThe growth and microstructural evolution of Al/Ni and Ni/AI bilayer thin films have been investigated as a function of Al and Ni layer thickness and thermal treatment by transmission electron microscopy. Studies were also made of Al and Ni single layers of varying thickness. All films were grown by dc magnetron sputtering using carbon coated Cu TEM grids as substrates. For the bilayers, the Al thickness was fixed at either 3.5 or 7.0 nm while the Ni thickness was varied systematically from 3.2 to 12.8 nm. Deposition sequence significantly influenced bilayer microstructure even in as-deposited samples. Al/Ni bilayers generally exhibited a finer microstructure than Ni/AI. In the 3.5 nm Al/Ni bilayers no conclusive electron diffraction evidence was found for elemental Al while for the reverse sequence both Al and NiAl3 diffraction rings were found. In the 7.0 nm Al/Ni bilayers diffraction rings due to Al were observed. The reverse sequence again produced both Al and NiAl3 diffraction rings. Interestingly, diffraction rings due to the Ni layers were found for all samples but were consistently measured at positions corresponding to a 2.5–3.5% increase in interplanar spacing. Annealing at 385°C produced evidence for generalized grain growth and strong accentuation of the electron diffraction rings due to the NiAl3 phase. Again, deposition significantly influenced annealed bilayer microstructure. For the Al/Ni sequence annealing produced polycrystalline N1AI3 island-like structures, while for Ni/AI bilayers, annealing promoted the growth of small NiAl3 crystals uniformly distributed in the film.


2019 ◽  
Vol 73 (1) ◽  
pp. 25-35
Author(s):  
Bojana Markovic ◽  
Vojislav Spasojevic ◽  
Aleksandra Dapcevic ◽  
Zorica Vukovic ◽  
Vladimir Pavlovic ◽  
...  

Magnetic and non-magnetic macroporous crosslinked copolymers of glycidyl methacrylate and trimethylolpropane trimethacrylate were prepared by suspension copolymerization and functionalized with diethylenetriamine. The samples were characterized by mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy analysis (FTIR-ATR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and SQUID magnetometry. The FTIR-ATR analysis of synthesized magnetic nanocomposites confirmed the presence of magnetite and successful amino- functionalization. Non-functionalized and amino-functionalized nanocomposites exhibited superparamagnetic behavior at 300 K, with a saturation magnetization of 5.0 emu/g and 2.9 emu/g, respectively. TEM analysis of the magnetic nanocomposite has shown that magnetic nanoparticles were homogeneously dispersed in the polymer matrix. It was demonstrated that incorporation of magnetic nanoparticles enhanced the thermal stability of the magnetic nanocomposite in comparison to the initial non-magnetic macroporous copolymer.


1999 ◽  
Vol 14 (5) ◽  
pp. 2012-2022 ◽  
Author(s):  
Andreas Seifert ◽  
Laurent Sagalowicz ◽  
Paul Muralt ◽  
Nava Setter

Pb1−xCaxTiO3 thin films with x = 0−0.3 for pyroelectric applications were deposited on platinized silicon wafers by chemical solution processing. Ca-substitution for Pb in PbTiO3 results in a reduced c/a ratio of the unit cell, which, in turn, leads to better pyroelectric properties. Control of nucleation and growth during rapid thermal annealing to 650 °C allowed the formation of either highly porous or dense (111) oriented films. The inclusion of pores creates a matrix-void composite with the low permittivity desired for pyroelectric applications, resulting in a high figure of merit. The growth mechanisms for the microstructural evolution of both dense and porous films were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Rutherford backscattering spectrometry and allowed establishment of microstructure/property relationships.


2020 ◽  
Vol 1013 ◽  
pp. 52-58
Author(s):  
Xu Dong Lu ◽  
Song Yi Shi ◽  
Bo Wen ◽  
Ya Wei Zhang ◽  
Jin Hui Du

The relaxation properties of GH4169 alloy were studied contrastively at temperatures ranging from 600 oC to 700 °C and initial stress ranging from 550 MPa to 850 MPa. The relationship between the microstructure and relaxation behavior was evaluated using transmission electron microscopy techniques. It was found that the relaxation limit and relaxation stability of the alloy decreased obviously with the increase of temperature. Further investigations show that the relaxation behavior is mainly depend on both precipitate characteristics and its interaction with dislocations. The alloy with higher strength lever has more excellent stress relaxation stability, because of the inhibition of a large number subgrains on dislocations motion.


Sign in / Sign up

Export Citation Format

Share Document