Modelling of Strain Rate and Temperature Dependent Flow Stresses of Supercooled Austenite for AISI 4140

2013 ◽  
Vol 762 ◽  
pp. 122-127 ◽  
Author(s):  
Maximilian Schwenk ◽  
Bernhard Kaufmann ◽  
Jürgen Hoffmeister ◽  
Volker Schulze

The numerical modelling of heat treatment has become an essential tool in understanding distortion potentials for case hardening. When looking at other surface hardening processes such as induction or laser hardening, high heating and cooling rates automatically lead to higher strain rates during the heat treatment cycle. So far, there have been almost no investigations on the strain rate as well as temperature dependency of the mechanical properties of supercooled austenite. In this paper, the typical induction and laser hardening steel AISI 4140 has been used in order to determine the influence of strain rate and temperature on the mechanical behaviour. The experiments are based on tensile tests, using a specifically designed thermo-mechanical simulator. The experimental results show that a positive strain rate sensitivity for strain rates up to 1 s-1 results. Especially in the temperature interval where austenite formation occurs during heating, the strain rate sensitive flow stress might lead to an alteration of the plastic strains in comparison to conventional heat treatments at low heating rates. The material model presented in this paper allows a good reproduction of the experimental data over a wide range of strain rates and temperatures.

2011 ◽  
Vol 82 ◽  
pp. 124-129 ◽  
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni ◽  
Stefano Bianchi

In this paper the first results of the mechanical characterization in tension of two high strength alloys in a wide range of strain rates are presented. Different experimental techniques were used for different strain rates: a universal machine, a Hydro-Pneumatic Machine and a JRC-Split Hopkinson Tensile Bar. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. An increase of the stress at a given strain increasing the strain-rate from 10-3 to 103 s-1, a moderate strain-rate sensitivity of the uniform and fracture strain, a poor reduction of the cross-sectional area at fracture with increasing the strain-rate were shown. Based on these experimental results the parameters required by the Johnson-Cook constitutive law were determined.


2020 ◽  
Vol 321 ◽  
pp. 13003
Author(s):  
Zimin Lu ◽  
Jiao Luo ◽  
Miaoquan Li

Effect of strain rate on α-lath thickness of TC17 alloy with a basketweave microstructure was studied in the present work. For this purpose, this alloy was deformed in the β phase region and subsequently soluted and aged in α+β phase region. Moreover, optical micrograph (OM) and electron backscatter diffraction (EBSD) were applied to analyze the change of lath thickness at different strain rates. The result showed that α-lath thickness increased with increasing strain rate. This phenomenon was possibly attributed to the higher degree of variant selection (DVS) at higher strain rate (0.1 s-1). The higher DVS was beneficial for the formation of parallel α-lath colonies during cooling after deformation. And, these parallel α-lath colonies would more easily grow up and coarsen during subsequent heat treatment. Therefore, α-lath at higher strain rate is more thick.


2019 ◽  
Vol 92 ◽  
pp. 05008
Author(s):  
Zain Maqsood ◽  
Junichi Koseki ◽  
Hiroyuki Kyokawa

It has been unanimously acknowledged that the strength and deformation characteristics of bounded geomaterials, viz. cemented soils and natural rocks, are predominantly governed by the rate of loading/deformation. Rational evaluation of these time-dependent characteristics due to viscosity and ageing are vital for the reliable constitutive modelling. In order to study the effects of ageing and loading/strain rate (viscosity) on the behaviour of bounded geomaterials, a number of unconfined monotonic loading tests were performed on Gypsum Mixed Sand (GMS) specimens at a wide range of axial strain rates; ranging from 1.9E-05 to 5.3E+00 %/min (27,000 folds), and at different curing periods. The results indicate shifts in the viscous behaviour of GMS at critical strain rates of 2.0E-03 and 5.0E-01 %/min. In the light of this finding, the results are categorized into three discrete zones of strain rates, and the behaviour of GMS in each of these zones is discussed. A significant dependency of peak strength and stress-strain responses on strain rate was witnessed for specimens subjected to strain rates lesser than 2.0E-03 %/min, and the effects of viscosity/strain rate was found to be insignificant at strain rate higher than 5.0E-01%/min.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Peijie Liu ◽  
Yanming Quan ◽  
Guo Ding

Rail steel plays an indispensable role in the safety and stability of the railway system. Therefore, a suitable constitutive model is quite significant to understand the mechanical behavior of this material. Here, the compressive mechanical behavior of heat-treated U71Mn rail steel over a wide range of strain rates (0.001 s−1–10000 s−1) and temperatures (20°C–800°C) was systematically investigated via uniaxial quasistatic and dynamic tests. The split Hopkinson pressure bar (SHPB) apparatus was utilized to perform dynamic mechanical tests. The effects of temperature, strain, and strain rate on the dynamic compressive characteristics of U71Mn were discussed, respectively. The results indicate that the flow response of U71Mn is both temperature-sensitive and strain rate-sensitive. However, the influence of temperature on the flow response is more remarkable than that of strain rate. On the basis of the experimental data, the original and modified Johnson-Cook (JC) models of the studied material were established, respectively. Using correlation coefficient and average absolute relative error parameters, it is revealed that better agreement between the experimental and predicted stress is reached by the modified JC model, which demonstrates that the modified one can characterize the mechanical behavior of the studied material preferably.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5431-5437 ◽  
Author(s):  
W. G. GUO ◽  
C. QU ◽  
F. L. LIU

This paper is to understand and model the thermomechanical response of the rotary forged WHA, uniaxial compression and tension tests are performed on cylindrical samples, using a material testing machines and the split Hopkinson bar technique. True strains exceeding 40% are achieved in these tests over the range of strain rates from 0.001/s to about 7,000/s, and at initial temperatures from 77K to 1,073K. The results show: 1) the WHA displays a pronounced changing orientation due to mechanical processing, that is, the material is inhomogeneous along the section; 2) the dynamic strain aging occurs at temperatures over 700K and in a strain rate of 10-3 1/s; 3) failure strains decrease with increasing strain rate under uniaxial tension, it is about 1.2% at a strain rate of 1,000 1/s; and 4) flow stress of WHA strongly depends on temperatures and strain rates. Finally, based on the mechanism of dislocation motion, the parameters of a physically-based model are estimated by the experimental results. A good agreement between the modeling prediction and experiments was obtained.


2014 ◽  
Vol 566 ◽  
pp. 80-85
Author(s):  
Kenji Nakai ◽  
Takashi Yokoyama

The present paper is concerned with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10-3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves up to strains of nearly 0.08 for four different commercially available extruded polymers were determined on the standard split Hopkinson pressure bar (SHPB). The low and intermediate strain-rate compressive stress-strain relations were measured in an Instron testing machine. Six parameters in the modified Ramberg-Osgood equation were determined by fitting to the experimental stress-strain data using a least-squares fit. It was shown that the monotonic compressive stress-strain behavior over a wide range of strain rates can successfully be described by the modified Ramberg-Osgood constitutive model. The limitations of the model were discussed.


2010 ◽  
Vol 654-656 ◽  
pp. 1303-1306 ◽  
Author(s):  
Takashi Mizuguchi ◽  
Ryota Oouchi ◽  
Rintaro Ueji ◽  
Yasuhiro Tanaka ◽  
Kazunari Shinagawa

Fracture behaviour transitions due to change in the strain rate in steels with various Si content ranging from 2% to 5 wt% were studied. Room-temperature tensile tests were conducted over wide range of strain rates ranging from 10-3 s-1 to 103 s-1. Concerning of the steels with low Si content (no more than 3%), the nominal stress - nominal strain curves represented both uniform and local elongations at all strain rates. On the other hand, in 4% Si steel at a strain rate higher than 101 s-1, the tensile sample broke down without local elongation (necking). The stress at breaking was found to be nearly equal to its work hardening rate. The strain rate at which fracture behaviour transition took place in 5% Si steel (10-1s-1) was lower than that in 4% Si steel. TEM observations clarified the existence of deformation twins in the sample that fractured without necking. These results indicated that Si addition is subject to the brittle fractures and that the fracture mechanism transition is closely related with the deformation twinning behaviour.


2005 ◽  
Vol 482 ◽  
pp. 367-370
Author(s):  
Miroslava Ernestová

The paper summarizes results of tensile tests in low alloy steel (LAS) specimens (steels 15Kh2MFA and 15Kh2NMFA). Slow Strain Rate Tensile tests (SSRT) were performed in air at temperatures from 22 to 325°C over a wide range of strain rates from 2.5×10-6 to 1.67×10-3 s-1. The possible effect of strain rate and temperature to mechanical properties of tested LAS is searched for. The dynamic strain ageing (DSA) was observed within certain temperature ranges at lower strain rates tested and its hardening effect in terms of the maximum strengthening stress decreased linearly with the increase of log strain rate. It has been found that the occurrence of susceptibility to environmentally assisted cracking (EAC) of tested steels in high temperature water (HTW) is corelated to the DSA behavior. The result suggest that DSA reduces ductility of reactor pressure vessel (RPV) steel and its role in enhancing the EAC of RPV steels should not be neglected, in view of the coincidence with susceptibility zones for DSA and EAC in terms of strain rate and temperature. A reasonable coincidence was observed between the susceptibility to DSA exhibited by SSRT in air and with the EAC behavior observed in laboratory experiments.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Ramzi Othman

In several industrial applications, metallic structures are facing impact loads. Therefore, there is an important need for developing constitutive equations which take into account the strain rate sensitivity of their mechanical properties. The Johnson-Cook equation was widely used to model the strain rate sensitivity of metals. However, it implies that the yield and flow stresses are linearly increasing in terms of the logarithm of strain rate. This is only true up to a threshold strain rate. In this work, a three-constant constitutive equation, assuming an apparent activation volume which decreases as the strain rate increases, is applied here for some metals. It is shown that this equation fits well the experimental yield and flow stresses for a very wide range of strain rates, including quasi-static, high, and very high strain rates (from 10−5to 5 × 104 s−1). This is the first time that a constitutive equation is showed to be able to fit the yield stress over a so large strain rate range while using only three material constants.


2006 ◽  
Vol 306-308 ◽  
pp. 905-910 ◽  
Author(s):  
Zhi Hua Wang ◽  
Hong Wei Ma ◽  
Long Mao Zhao ◽  
Gui Tong Yang

The compressive deformation behavior of open-cell aluminum foams with different densities and morphologies was assessed under quasi-static and dynamic loading conditions. High strain rate experiments were conducted using a split Hopkinson pressure bar technique at strain rates ranging from 500 to 1 2000 − s . The experimental results shown that the compressive stress-strain curves of aluminum foams also have the “ three regions” character appeared in general foam materials, namely elastic region, collapse region and densification regions. It is found that density is the primary variable characterizing the modulus and yield strength of foams and the cell appears to have a negligible effect on the strength of foams. It also is found that yield strength and energy absorption is almost insensitive to strain rate and deformation is spatially uniform for the open-celled aluminum foams, over a wide range of strain rates.


Sign in / Sign up

Export Citation Format

Share Document