Thermal Stability of Retained Austenite in Low Alloyed TRIP-Steel Determined by High Energy Synchrotron Radiation

2013 ◽  
Vol 772 ◽  
pp. 129-133
Author(s):  
Stefan Brauser ◽  
Arne Kromm ◽  
Eitan Dabah ◽  
Thomas Kannengiesser ◽  
Michael Rethmeier

TRIP-steels offer a good combination between strength and ductility. Therefore TRIP-steels are widely used in the automobile industries. The aim of this work is to study the stability of involved phases during heating and to identify the kinetics of the occuring phase transformations. For that purpose, in-situ diffraction measurements, using high energy synchrotron radiation were conducted. The analysis revealed the decomposition of the metastable austenitic phase into carbide and ferrite along the heating process and the regeneration of the austenite by further heating of the sample.

1996 ◽  
Vol 11 (5) ◽  
pp. 1255-1264 ◽  
Author(s):  
Thomas Wagner ◽  
Marko Lorenz ◽  
Manfred Rühle

The Nb/α−Al2O3 system has been used as a model study for investigating the stability of different MBE grown epitaxial Nb films on α−Al2O3 substrates. The films were grown at 800 °C in ultrahigh vacuum. The growth process was monitored in situ by reflection high energy electron diffraction (RHEED). After deposition the structure of the film was investigated by x-ray diffraction (XRD) and conventional transmission electron microscopy (CTEM) which encompasses also selected area diffraction (SAD). Both techniques revealed the following orientation relationship between the Nb film and the α–Al2O3 substrate: (0001)α–Al2O3‖ (111)Nb; [2110]α–Al2O3‖ [110]Nb. The stability of the niobium films was investigated by annealing the Nb-film/α–Al2O3 system to temperatures up to 1500 °C for different periods of time. Surprisingly, the orientation relationship between the Nb film and the substrate changed to (0001)α–Al2O3‖ (110)Nb; [0110]α–Al2O3‖ [001]Nb. A model will be developed which shows that above a critical film thickness the growth orientation is metastable with respect to its crystallographic orientation. Furthermore, high resolution transmission electron microscopy (HREM) was performed to investigate the defect structure of the annealed Nb/α–Al2O3 interface.


2013 ◽  
Vol 28 (2) ◽  
pp. 77-80 ◽  
Author(s):  
R. Blondé ◽  
E. Jimenez-Melero ◽  
L. Zhao ◽  
J.P. Wright ◽  
E. Brück ◽  
...  

The martensitic transformation behavior of the meta-stable austenite phase in low alloyed TRIP steels has been studied in situ using high-energy X-ray diffraction during deformation. The stability of austenite has been studied at different length scales during tensile tests and at variable temperatures down to 153 K. A powder diffraction analysis has been performed to correlate the macroscopic behavior of the material to the observed changes in the volume fraction of the phases. Our results show that at lower temperatures the deformation induced austenite transformation is significantly enhanced and extends over a wider deformation range, resulting in a higher elongation at fracture. To monitor the austenite behavior at the level of an individual grain a high-resolution far-field detector was used. Sub-grains have been observed in austenite prior to transformation.


Materials ◽  
2016 ◽  
Vol 9 (1) ◽  
pp. 15 ◽  
Author(s):  
Kun Mo ◽  
Di Yun ◽  
Yinbin Miao ◽  
Xiang Liu ◽  
Michael Pellin ◽  
...  

1990 ◽  
Vol 23 (6) ◽  
pp. 545-549 ◽  
Author(s):  
H. L. Bhat ◽  
S. M. Clark ◽  
A. El Korashy ◽  
K. J. Roberts

The design of a new microfurnace for use for Laue diffraction studies of solid-state transformations is described. The furnace operates in the temperature range 298–573 K with a thermal stability of about ± 0.1 K. The potential of the synchrotron-radiation Laue diffraction technique for studies of structural phase transitions is demonstrated. Experimental data on phase transitions in caesium periodate, potassium tetrachlorozincate and pentaerythritol are presented.


2020 ◽  
Vol 91 (7) ◽  
pp. 073901
Author(s):  
Jiri Orava ◽  
Konrad Kosiba ◽  
Xiaoliang Han ◽  
Ivan Soldatov ◽  
Olof Gutowski ◽  
...  

2006 ◽  
Vol 13 (02n03) ◽  
pp. 155-166 ◽  
Author(s):  
WOLFGANG BRAUN ◽  
KLAUS H. PLOOG

X-rays are ideal to study the structure of crystals due to their weak interaction with matter and in most cases allow a quantitative analysis using kinematical theory. To study the incorporation of atoms during crystal growth and to analyze the kinetics on the crystal surface high primary beam intensities available at synchrotrons are required. Our studies of the molecular beam epitaxy growth of III–V semiconductors reveal that, despite their similarity in crystal structure, the surface kinetics of GaAs (001), InAs (001) and GaSb (001) differ strongly. GaAs shows an unexpectedly large coarsening exponent outside the predicted range of Ostwald ripening models during recovery. GaSb exhibits dramatically different surface morphology variations during growth and recovery. Overgrowth of GaAs by epitaxial MnAs demonstrates the ability of X-ray diffraction to follow an interface as it is buried during heteroepitaxy, which is not possible by reflection high-energy electron diffraction.


2006 ◽  
Vol 519-521 ◽  
pp. 1569-1578
Author(s):  
Dorte Juul Jensen

By 3 dimensional X-ray diffraction (3DXRD) using high energy X-rays from synchrotron sources it is possible to study in-situ the nucleation and growth during recrystallization. In this paper it is described and discussed how 3DXRD can supplement EBSP measurements of nucleation and growth. Three types of studies are considered: i) orientation relationships between nuclei and parent deformed matrix, ii) recrystallization kinetics of individual bulk grains and iii) filming of growing grains in deformed single crystals.


Sign in / Sign up

Export Citation Format

Share Document