scholarly journals Assessment of the Advantages of Static Shoulder FSW for Joining Aluminium Aerospace Alloys

2014 ◽  
Vol 783-786 ◽  
pp. 1770-1775
Author(s):  
Hao Wu ◽  
Ying Chun Chen ◽  
David Strong ◽  
Philip Prangnell

Stationary (or Static) Shoulder Friction Stir Welding (SS-FSW) is a variant of FSW that was developed primarily to improve the weldability of titanium alloys by reducing the through thickness temperature gradient. Surprisingly, SS-FSW has been largely ignored by the Al welding community because it is widely supposed a rotating shoulder is an essential aspect of the process and that the higher conductivity means the surface heating effect of the shoulder is generally beneficial. In the work presented it is shown that SS-FSW has major advantages when welding high strength aluminium alloys; including a reduction in the heat input, a massive improvement in surface quality, and a narrower and more symmetric temperature distribution, which leads to narrower welds with a reduced heat affected zone width and lower distortion. The reasons for these benefits are discussed based on a systematic study aimed at directly comparing both processes.

2010 ◽  
Vol 636-637 ◽  
pp. 459-464 ◽  
Author(s):  
M.J.C. Rosales ◽  
N.G. Alcantara ◽  
Jorge Santos ◽  
R. Zettler

Although new structural and advanced materials have been used in the automotive and aircraft industries, especially lightweight alloys and advanced high strength steels, the successful introduction of such materials depends on the availability of proven joining technologies that can provide high quality and performance joints. Solid-state joining techniques such as Friction Stir Welding (FSW) are a natural choice since their welds are produced at low temperatures, so the low heat input provides limited, slight distortion, microstructural and mechanical degradation. Great effort has currently been devoted to the joining of Al-Cu-Mg and the Al-Mg-Si alloys because of their high strength, improved formability, and application in airframe structures. FSW is a continuous, hot shear, autogenous process involving a non-consumable and rotating tool plunged between two abutting workpieces. The backing bar plays an important role in heat transfer from stir zone (SZ), which can influence the weld microstructure as well as the consolidation of material in the root of the join. This study aims at investigating issues concerning heat generation, within the SZ of friction stir welded aircraft aluminium alloys.


2014 ◽  
Vol 794-796 ◽  
pp. 407-412 ◽  
Author(s):  
Hao Wu ◽  
Ying Chun Chen ◽  
David Strong ◽  
Philip Prangnell

Static Shoulder Friction Stir Welding (SS-FSW) is a modification to conventional FSW that was originally developed to improve the weldability of titanium alloys by reducing through thickness temperature gradients. Surprisingly, to date, there have been no published systematic studies comparing SS-FSW to FSW for aluminium welding. This may be because the high conductivity of aluminium means the heat input produced by the shoulder is thought to be beneficial. In the work presented when welding a high strength 7050 aluminium alloy, even in a relatively thin 6 mm plate, it is shown that SS-FSW has several advantages; including a reduction in the heat input, a massive improvement in surface quality, and a more uniform through thickness temperature distribution, which leads to narrower welds with a reduced heat affected zone width and more homogeneous through thickness properties. The reasons for these benefits are discussed.


2017 ◽  
Vol 36 (7) ◽  
pp. 733-739 ◽  
Author(s):  
Yumei Yue ◽  
Quan Wen ◽  
Shude Ji ◽  
Lin Ma ◽  
Zan Lv

AbstractIn order to investigate the formation mechanism of tunnel defect produced near the bottom of stir zone (SZ) in friction stir welding joint of Ti–6Al–4V titanium alloy, the temperature distribution during welding process was analyzed by numerical simulation and experiment. Results show that macrostructure morphology of SZ in cross section presents “bowl” shape owing to the characteristic of temperature distribution. Obvious temperature gradient appears along the thickness direction of joint. Decreasing rotational velocity reduces peak temperature and temperature gradient, which is beneficial to eliminate tunnel defect.


2012 ◽  
Vol 706-709 ◽  
pp. 1008-1013 ◽  
Author(s):  
J.D. Robson ◽  
L. Campbell

Friction stir welding is conceptually simple but metallurgically highly complex due to thecombination of severe deformation and high temperature. This is particularly true in the case ofprecipitation strengthened alloys, such as high strength aerospace aluminium alloys, where theheat and deformation of FSW lead to profound changes in both grain structure and precipitatedistribution that ultimately determine weld performance.


Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


Sign in / Sign up

Export Citation Format

Share Document