Modelling of the Density Changes of Nodular Cast Iron During Solidification by CA-FD Method

2014 ◽  
Vol 790-791 ◽  
pp. 140-145
Author(s):  
Andriy A. Burbelko ◽  
Daniel Gurgul ◽  
Wojciech Kapturkiewicz ◽  
Edward Guzik

Formation of the shrinkage defects in ductile iron castings is far more complicated phenomenon than in other casting alloys. In the presented paper changes the ductile iron density during solidification is analyzed. During the solidification path the influence of the temperature, phase fractions and phase composition is taking into account. Computer model, using cellular automata method, for estimation of changes in density of ductile iron during its solidification is applied. Results of the solidification modeling for Fe-C binary alloys with different composition in the castings with a different wall thickness are presented. As a result of calculations it was stated that after undercooling ductile iron below liquidus temperature volumetric changes proceed in three stages: pre-eutectic shrinkage (minimal in eutectic cast iron), eutectic expansion and the last shrinkage.

2013 ◽  
Vol 13 (4) ◽  
pp. 9-14 ◽  
Author(s):  
A.A. Burbelko ◽  
D. Gurgul ◽  
M. Królikowski ◽  
M. Wróbel

Abstract Formation of the shrinkage defects in ductile iron castings is far more complicated phenomenon than in other casting alloys. In the paper one of the aspects of formation of porosity in this alloy was considered - changes in cast iron's density during crystallization caused by varying temperature, phase fractions and phase's composition. Computer model, using cellular automata method, for determination of changes in density of ductile iron during crystallization was applied. Simulation of solidification was conducted for 5 Fe-C binarie alloys with ES from 0.9 to 1.1 for the estimation of the eutectic saturation influence on the ductile iron shrinkage and expansion. As a result of calculations it was stated that after undercooling ductile iron below liquidus temperature volumetric changes proceed in three stages: preeutectic shrinkage (minimal in eutectic cast iron), eutectic expansion (maximum value equals to about 1.5% for ES = 1.05) and last shrinkage (about 0.4% in all alloys regardless of ES).


2014 ◽  
Vol 59 (3) ◽  
pp. 1037-1040 ◽  
Author(s):  
I. Vasková ◽  
M. Hrubovčáková ◽  
J. Malik ◽  
Š. Eperješi

Abstract Ductile cast iron (GS) has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 649
Author(s):  
Marcin Górny ◽  
Magdalena Kawalec ◽  
Gabriela Sikora ◽  
Ewa Olejnik ◽  
Hugo Lopez

This paper considers the most important quality factors in processing spheroidal graphite cast iron; namely, primary grains and graphite nodules in thin-walled ductile iron castings (TWDI). In the present study, the effect of grain refinement (by means of Ti, Nb and Zr) and of the holding time after spheroidization and inoculation on effecting the primary grains and eutectic structure in TWDI castings was investigated. Moreover, metallographic examinations (including electron backscattering diffraction, EBSD) were carried out to reveal the macro- and micro-structural features during the primary and eutectic solidification of the cast iron. EBSD results indicate that, within a single dendritic grain, there are numerous boundaries that split the grain into numerous smaller areas. In particular, it is found that the graphite nodules are in contact with the boundaries inside the primary dendritic grain. In turn, crystallization of highly branched dendrites is observed, which seems to “push” the graphite nodules into the interdendritic regions during their growth. The present work investigates the dominant mechanism that gives rise to the primary spheroidal graphite cast iron (SGI) structure. In addition, this work shows that the melt quality is closely associated with the resultant morphology and number of austenite dendrites, graphite nodules, and matrix structure.


2020 ◽  
Vol 998 ◽  
pp. 42-47
Author(s):  
Alena Pribulová ◽  
Peter Futaš ◽  
Marcela Pokusova

Worldwide production of ductile iron castings reached in year 2017 26,428,148 metric tons, which is 34% of the total weight of all castings made from cast iron. The most significant increase in ductile iron castings was recorded in Slovakia, up to 78.6%. Castings from ductile iron have a very huge utilization thanks their very good foundry and mechanical properties. The current economic situation in all industries forces entrepreneurs and producers to rationalize production and reduce production costs, with a worldwide trend to increase the share of steel scrap, a technology for the production of ductile cast iron. The paper describes the results of research focused on the effect of charge composition, mainly the share of scrap steel on the final properties and structure of ductile iron EN-GJS-500-7 under the operating conditions of foundry. Six melts with different charge composition were made. The samples from all melts were taken and chemical analysis, microstructure analysis and testing on mechanical properties were made on them. The mechanical properties of produced globular cast irons were according with the relevant standard. It is important to mention that there has been a significant increase in strength characteristics in melts in which the carbon content exceeded 4% (CE = 4.7 and 4.8%, respectively).


2014 ◽  
Vol 59 (2) ◽  
pp. 459-465 ◽  
Author(s):  
E. Fraś ◽  
M. Górny ◽  
H. Lopez

Abstract The paper discusses the reasons behind current trends for substituting cast iron castings by aluminum alloys. In particular it is shown that it is possible to produce thin wall castings (control arms, cantilevers and rotors) made of ductile iron without the development of chills, cold laps or misruns, and with a strength to weight ratio of up 87 MPa cm3/g. In addition, austenitizing at 900 °C for 20 minutes and then austempering in a salt bath at 350 °C for 15 minutes promotes the development of a fully ausferritic matrix in thin wall castings with a the strength to weight ratio increase of up to 154 MPa cm3/g. Finally, it is shown that thin wall castings made of ductile or austemperded cast iron can be lighter and with superior mechanical properties then their substitutes made of aluminum alloy.


2020 ◽  
Vol 1546 ◽  
pp. 012058
Author(s):  
A S Eletskaya ◽  
E A Shibeev ◽  
G S Garibyan ◽  
E N Eremin ◽  
A V Tiyan ◽  
...  

2012 ◽  
Vol 12 (4) ◽  
pp. 53-56
Author(s):  
E. Guzik ◽  
D. Wierzchowski

Abstract The results of studies on the use of modern two cored wires injection method for production of ferritic nodular cast iron (ductile iron) with use of unique implementation of drum ladle as a treatment / transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describes the results and analysis of using this method for optimal production of ductile iron under specific industrial conditions. It means, that length of nodulariser wire plus treatment and pouring temperatures were optimized. In this case, was taken ductile iron with material designation: EN-GJS-SiMo40-6 Grade according EN 16124:2010 E. Microstructure of great number of trials was controlled on internally used sample which has been correlated with standard sample before. The paper presents typical ferritic metallic matrix and nodular graphite. Additionally, mechanical properties were checked in some experiments. Mean values of magnesium recovery and cost of this new method from optimized process parameters were calculated as well.


2010 ◽  
Vol 457 ◽  
pp. 261-266
Author(s):  
Vladimir D. Belov ◽  
Edis B. Ten ◽  
Alexander S. Drokin

This work deals with the problem of casting production from high-aluminum cast iron Al22D. This cast iron is characterized by unique combination of properties [1-3]: high heat-resistance in corrosive gases medium especially containing sulfurous gases; relatively low density in comparison with gray iron and satisfactory mechanical properties. In addition, castings made from high aluminum cast iron Al22D are required in many areas of mechanical engineering. However, obtaining high-quality products from this cast iron is a particular problem due to its low-casting properties, especially its high tendency to gas saturation, oxidization and forming scabs, shrinkage and gas-shrinkage defects. Therefore, the aim of this work is the study of the castings feeding parameters. In addition, the technology of "exhaust manifold" casting of internal combustion engine designed to work in forced mode was developed on the basis of the obtained results.


1994 ◽  
Vol 8 (4) ◽  
pp. 326-328
Author(s):  
J Veselko ◽  
J Mesko ◽  
J Pleva ◽  
R Konecna ◽  
J Strapko

Sign in / Sign up

Export Citation Format

Share Document