Characterization of Motion of Dendrite Fragment by X-Ray Radiography on Earth and under Microgravity Environment

2014 ◽  
Vol 790-791 ◽  
pp. 311-316 ◽  
Author(s):  
Georges Salloum-Abou-Jaoude ◽  
Henri Nguyen-Thi ◽  
Guillaume Reinhart ◽  
Ragnvald H. Mathiesen ◽  
Gerhard Zimmermann ◽  
...  

In the frame of ESA-MAP (Microgravity Application Promotion) project entitled XRMON (In situ X-Ray MONitoring of advanced metallurgical processes under microgravity and terrestrial conditions), a microgravity (μg) experiment in the XRMON-GF (Gradient Furnace) setup was successfully launched in 2012 on board MASER 12 sounding rocket. During this experiment, in situ and real time observations of the formation of the solidification microstructures in diffusive conditions were carried out for the first time by using X-ray radiography. In addition, two reference experiments with the same control parameters but in ground-based conditions were performed to enable us a direct comparison with the μg experiment and therefore to enlighten the effects of gravity upon microstructure formation. This communication reports on fragmentation phenomenon observed during those experiments. For 1g upward solidification, fragmentations mainly take place in the upper part of the mushy zone. After their detachments, dendrite fragments are carried away by buoyancy force in the bulk liquid where they are gradually remelted. For μg experiment and horizontal solidification, this type of fragmentation is not observed. However, a great number of fragmentations are surprisingly revealed by in situ observation in the deep part of the mushy zone, when the liquid fraction is very small. Moreover, as soon as they are detached, the dendrite fragments move toward the cold part of the mushy zone, even in the case of μg experiment. The observations suggest that sample shrinkage may be at the origin of this fragment motion.

2015 ◽  
Vol 754-755 ◽  
pp. 508-512
Author(s):  
M.A.A. Mohd Salleh ◽  
A. Sugiyama ◽  
Hideyuki Yasuda ◽  
Stuart D. McDonald ◽  
Kazuhiro Nogita

This paper demonstrates the development of an experimental technique of in-situ observation for soldering of Sn-0.7wt%Cu lead-free solder on a Cu substrate which was achieved for the first time by synchrotron X-ray imaging. Reactions between liquid solder and Cu substrate during a soldering process were able to be recorded in real-time. Individual stages of the soldering process consisted of flux activation in removal of Cu oxide, solder melting and contact with the Cu substrate (wetting) and intermetallic compound (IMC) and void formation between the solder and Cu substrate. The technique development which includes experimental setup with calculated optimum beam energy in the range of 20 – 30 keV appears to result in a clear observation of real-time X-ray imaging of the soldering process. This technique provides a key method to understand the mechanism of formation of micro-electronic inter-connects for future electronic packaging applications.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1132-1137 ◽  
Author(s):  
N. JIANG ◽  
S. XU ◽  
K. N. OSTRIKOV ◽  
E. L. TSAKADZE ◽  
J. D. LONG ◽  
...  

An attempt for modification of carbon nitride material by introduction of Al to form a ternary Al-C-N compound in a thin film deposited using inductively coupled plasma (ICP) assisted DC magnetron sputtering is reported. Optical emission spectroscopy (OES) is used for in-situ observation and identification of reactive species. The films were characterized using x-ray photoelectron spectroscopy (XPS) and x-ray diffraction spectroscopy (XRD). The results indicate that C-N bond is formed in the plasma. The XPS narrow scam spectra confirm the existence of C-Al, sp2C-N and sp3C-N bonds. Elemental proportion of carbon increases with the CH4/N2 flow rate ratio, and has a tendency to saturate. The film is dominated by c-AlN (111), mixed with Al4C3 and AlCN ternary compound.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


1993 ◽  
Vol 308 ◽  
Author(s):  
Paul R. Besser ◽  
Thomas N. Marieb ◽  
John C. Bravman

ABSTRACTStrain relaxation in passivated Al-0.5% Cu lines was measured using X-ray diffraction coupled with in-situ observation of the formation and growth of stress induced voids. Samples of 1 μm thick Al-0.5% Cu lines passivated with Si3N4 were heated to 380ºC, then cooled and held at 150ºC. During the test, principal strains along the length, width, and height of the line were determined using a grazing incidence x-ray geometry. From these measurements the hydrostatic strain in the metal was calculated and strain relaxation was observed. The thermal cycle was duplicated in a high voltage scanning transmission electron microscope equipped with a backscattered electron detector. The 1.25 μm wide lines were seen to have initial stress voids. Upon heating these voids reduced in size until no longer observable. Once the samples were cooled to 150ºC, voids reappeared and grew. The measured strain relaxation is discussed in terms of void and θ-phase (Al2Cu) formation.


2016 ◽  
Vol 108 (21) ◽  
pp. 211902 ◽  
Author(s):  
Xian Chen ◽  
Nobumichi Tamura ◽  
Alastair MacDowell ◽  
Richard D. James

Author(s):  
Shabana Noor ◽  
Richard Goddard ◽  
Fehmeeda Khatoon ◽  
Sarvendra Kumar ◽  
Rüdiger W. Seidel

AbstractSynthesis and structural characterization of two heterodinuclear ZnII-LnIII complexes with the formula [ZnLn(HL)(µ-OAc)(NO3)2(H2O)x(MeOH)1-x]NO3 · n H2O · n MeOH [Ln = Pr (1), Nd (2)] and the crystal and molecular structure of [ZnNd(HL)(µ-OAc)(NO3)2(H2O)] [ZnNd(HL)(OAc)(NO3)2(H2O)](NO3)2 · n H2O · n MeOH (3) are reported. The asymmetrical compartmental ligand (E)-2-(1-(2-((2-hydroxy-3-methoxybenzylidene)amino)-ethyl)imidazolidin-2-yl)-6-methoxyphenol (H2L) is formed from N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) through intramolecular aminal formation, resulting in a peripheral imidazoline ring. The structures of 1–3 were revealed by X-ray crystallography. The smaller ZnII ion occupies the inner N2O2 compartment of the ligand, whereas the larger and more oxophilic LnIII ions are found in the outer O2O2’ site. Graphic Abstract Synthesis and structural characterization of two heterodinuclear ZnII-LnIII complexes (Ln = Pr, Nd) bearing an asymmetrical compartmental ligand formed in situ from N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) through intramolecular aminal formation are reported.


2014 ◽  
Vol 47 (6) ◽  
pp. 2078-2080 ◽  
Author(s):  
Monika Witala ◽  
Jun Han ◽  
Andreas Menzel ◽  
Kim Nygård

It is shown that small-angle X-ray scattering from binary liquid mixtures close to the critical point of demixing can be used forin situcharacterization of beam-induced heating of liquid samples. For demonstration purposes, the proposed approach is applied on a well studied critical mixture of water and 2,6-lutidine. Given a typical incident X-ray flux at a third-generation synchrotron light source and using a 1.5 mm-diameter glass capillary as sample container, a beam-induced local temperature increase of 0.45 ± 0.10 K is observed.


ChemInform ◽  
2006 ◽  
Vol 37 (12) ◽  
Author(s):  
Katsuhiro Kobayashi ◽  
Tadashi Hata ◽  
Hiroshi Fukuhara ◽  
Yuji Ohashi
Keyword(s):  

2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


2018 ◽  
Vol 22 (09n10) ◽  
pp. 814-820
Author(s):  
Yingying Jia ◽  
Ling Xu ◽  
Bangshao Yin ◽  
Mingbo Zhou ◽  
Jianxin Song

Beginning with 5,10,15-triarylporphyrin-nickel complex, five meso-to-meso directly linked porphyrin-diazaporphyrin triads were successfully prepared for the first time through a series of reactions including formylation via Vilsmeier–Haack reaction, condensation with pyrrole, bromination with [Formula: see text]-Bromosuccinimide (NBS), oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), metal-templated cyclization of dibromodipyrrin-metal complexes with NaN[Formula: see text] and demetalization. All these triads were comprehensively characterized by [Formula: see text]H NMR, high-resolution mass spectrometry and UV-vis absorption. In addition, the structure of compound 6Ni was unambiguously determined by X-ray diffraction analysis, which showed that the two dihedral angles are both 86.65 (4)[Formula: see text] between each mean plane of porphyrin and that of central diazaporphyrin The UV-vis absorption spectra disclosed that the longest wavelengths of Soret bands and Q bands for these triads were observed at 429 and 642 nm, respectively. In contrast to diazaporphyrin-porphyrin dyads, diazaporphyrin dimers and diazaporphyrin monomers reported previously the molar extinction coefficients, particularly for triad 8Ni are much higher.


Sign in / Sign up

Export Citation Format

Share Document