Effects of Thermo-Mechanical Treatment on the Microstructure of AA7085 Aluminum Alloy

2014 ◽  
Vol 794-796 ◽  
pp. 1193-1198 ◽  
Author(s):  
Hong Wei Tong ◽  
Wen Yi Liu ◽  
Guang Jie Huang ◽  
Qing Liu

The microstructure of pre-aged AA7085 rolled plate was studied by means of hardness tests, optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and electrical conductivity tests. The results show that supper refined and homogeneous precipitates were formed during pre-aging, but the hardness of the alloy was still relatively low. There occurred a large number of dislocations when the warm deformation was introduced, and the size of the intragranular precipitates firstly increases and then decreases and then increases with the dislocation density increasing, which was caused by the role of dislocations on inhibiting the formation of GP zone and promoting the nucleation and transformation ofηphase. Meanwhile, the distribution of grain boundary precipitates also changed from continuous chain to coarsening interrupted distribution and the precipitate free zone (PFZ) broadened obviously.

2001 ◽  
Vol 16 (7) ◽  
pp. 1960-1966 ◽  
Author(s):  
K. Miyazawa ◽  
H. Satsuki ◽  
M. Kuwabara ◽  
M. Akaishi

The structure and hardness of C60 bulk specimens compressed under 5.5 GPa at room temperature to 600 °C are investigated by high-resolution transmission electron microscopy, x-ray diffraction, and micro-Vickers hardness tests. A strong accumulation of the [1 1 0]tr orientation of high-pressure-treated C60 specimens was developed along the compression axis, and stacking faults and nano-sized deformation twins were introduced into the C60 specimens compressed at 450–600 °C. Curved lattice planes indicating a polymerization of C60 were observed by high resolution transmission electron microscopy (HRTEM). The polymerization of the high-pressure-compressed C60 is also supported by the computer simulation of HRTEM images.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1807 ◽  
Author(s):  
Cuiqin Li ◽  
Qianlin Chen ◽  
Yunan Yan

There has been research on CaMnO3 with natural abundance, low toxicity, and low cost as promising candidates for n-type thermoelectric (TE) materials. In this paper, Ca1−2xPrxYbxMnO3 with different Pr and Yb contents (x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by means of coprecipitation. With X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM), researchers characterized the phase structure and morphology of all the samples. The oxidation states of manganese were determined by X-ray photoemission spectroscopy (XPS). The role of Ca-site dual doping in the TE properties was also investigated. Increasing the Pr and Yb contents leads to decreases in the electrical resistivity and Seebeck coefficient, leading to a power factor of 3.48 × 10−4 W·m−1·K−2 for x = 0.04 at 773 K, which is its maximum. Furthermore, the thermal conductivity (κ) decreases with increasing x, and κ = 1.26 W m−1·K−1 is obtained for x = 0.04 at 973 K. Ca0.92Pr0.04Yb0.04MnO3 exhibit a ZT (thermoelectric figure of merit) value of 0.24 at 973 K, approximately 3 times more than that of the pristine CaMnO3. Thus, the reported method is a new strategy to enhance the TE performance of CaMnO3.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 397 ◽  
Author(s):  
Lingxiao Chen ◽  
Hang Liu ◽  
Linghao Liu ◽  
Yifan Zheng ◽  
Haodong Tang ◽  
...  

Ni nano-micro structures have been synthesized via a solution reduction route in the presence of ethylenediamine (EDA) under strong alkaline conditions. The phase composition, morphology, and microstructure of the resulting products are investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The presence of EDA plays an important role in the formation of Ni nano-micro structures, and microflowers or microspheres assembled from nanosized horns can be produced by changing the amount of EDA. The size of Ni nano-micro structures is dependent on the NaOH concentration, and long chains assembled from Ni nano-micro structured microspheres can be obtained by reducing the amount of NaOH solution used. The role of both EDA and NaOH in the reduction of Ni (II) to Ni, as well as in the growth of Ni nano-micro structures, has been discussed, and a possible formation mechanism of these Ni nano-micro structures has been proposed based on the experimental results.


2019 ◽  
Vol 10 (1) ◽  
pp. 252
Author(s):  
Min Xia ◽  
Hong-Yan Guo ◽  
Muhammad Irfan Hussain

Silicon carbide (SiC) nanowhiskers (NWs) constitute an important type of optical and structural materials. Herein, SiC NWs were successfully combustion synthesized (CSed) in a Si-C-N system using tungsten (W) as a catalyst. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction were used to characterize the SiC NWs. Results of morphological characterization indicated that the W-catalyzed CSed SiC NWs products were fluffy from surface to the core, and they were about several hundred micrometers in length with diameters less than 1 μm. For the comprehensive understanding of the initial growing progress of W-catalyzed CSed SiC NWs, the absorption behavior of C, N, and Si atoms on the crystal planes of W (100), W (110), and W (111) surfaces was investigated by using first-principles calculations. The calculated surface energy (Esurf) of the studied W surfaces and the absorption energy of C, N, and Si atoms on different sites, indicate that the C atom has a priority to sink to the nanometer catalysts grain of W, and the pre-sunk C atom then reacts with Si atom to form NWs.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


2021 ◽  
Vol 19 (1) ◽  
pp. 745-754
Author(s):  
Khoirina Dwi Nugrahaningtyas ◽  
Eddy Heraldy ◽  
Rachmadani ◽  
Yuniawan Hidayat ◽  
Indriana Kartini

Abstract The properties of three types of CoMo/USY catalysts with different synthesized methods have been studied. The sequential and co-impregnation methods followed by activation using calcination and reduction process have been conducted. The properties of the catalysts were examined using Fourier-transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) with refinement, and surface area analyzer (SAA). The FTIR spectrum study revealed the enhanced intensity of its Bronsted acid site, and the XRD diffractogram pattern verified the composition of pure metals, oxides, and alloys in the catalyst. The SAA demonstrated the mesoporous features of the catalyst. Scanning electron microscopy showed an irregular particle morphology. Additional analysis using the transmission electron microscopy indicated that the metal has successfully impregnated without damaging the USY structure.


Sign in / Sign up

Export Citation Format

Share Document