scholarly journals Some Environmentally Relevant Reactions of Cerium Oxide

2014 ◽  
Vol 13 (2) ◽  
pp. 148-161 ◽  
Author(s):  
Pavel Janoš ◽  
Jakub Ederer ◽  
Marek Došek

Abstract Reactive forms of cerium oxide were prepared by a thermal decomposition of various precursors, namely carbonates, oxalates and citrates, commercially available nanocrystalline cerium oxide (nanoceria) was involved in the study for comparison. Scanning electron microscopy (SEM) and x-ray diffraction analysis (XRD) were used to examine the morphology and crystallinity of the samples, respectively, whereas the Brunauer-Emmett-Teller (BET) method of nitrogen adsorption was used to determine surface areas. Interactions of cerium oxide with some phosphorus-containing compounds were investigated. Some of the examined samples, especially those prepared by annealing from carbonate precursors, exhibited an outstanding ability to destroy highly toxic organophosphates, such as pesticides (parathion methyl), or nerve agents (soman, VX). There were identified some relations between the degradation efficiency of cerium oxides and their crystallinity. It was also shown that cerium oxide is able to destroy one of widely used flame retardants - triphenyl phosphate. A phosphatase-mimetic activity of various cerium oxides was examined with the aid of a standardized phosphatase test.

2014 ◽  
Vol 798-799 ◽  
pp. 100-105 ◽  
Author(s):  
Jocielys Jovelino Rodrigues ◽  
Liliane Andrade Lima ◽  
Gustavo Medeiros de Paula ◽  
Meiry Glaúcia Freire Rodrigues

A series of mesoporous materials have been synthesized in an acid medium, with various structures, such as SBA-15. These materials have many properties which make them potential catalysts. Among these we highlight their high surface areas and pore walls relatively thick, resulting in a greater hydrothermal stability. This work aims at the synthesis and characterization of molecular sieve SBA-15 with molar composition: 1.0 TEOS: 0.017 P123: 5.7 HCl: 193 H2O and Co/SBA-15 and catalysts for the reaction of Ru/Co/SBA-15 Fischer Tropsch process. The materials were characterized by the techniques of X-ray diffraction (XRD), chemical analysis by X-ray spectrometry, energy dispersive (EDX) and Nitrogen adsorption (BET method). X-ray diffraction showed that the calcined cobalt catalyst did not modify the structure of SBA-15 and that Co was present under the form of Co3O4 in the catalyst. The addition of cobalt in the SBA-15 decreased the specific superficial area of the molecular sieve.


2007 ◽  
Vol 336-338 ◽  
pp. 1914-1917
Author(s):  
Lei Yang ◽  
Zhen Yi Zhang ◽  
Xiao Shan Ning ◽  
Guang He Li

In this paper, a novel and highly efficient hydroxyapatite (HA) carrier for cultivating hydrocarbon degradation bacteria (HDB) is introduced. The HA particles synthesized through a sol-gel method and different heat treatments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET method. The microbial amount and activities of HDB cultivated on HA carriers were quantitatively investigated in order to assess their enriching capabilities. The results showed that HA synthesized at 550°C and the one without calcination could enrich HDB 3 and 2 magnitude orders more than the activated carbon, respectively. Mechanisms of bacterial enrichment on HA and activated carbon were also studied, and it is believed that the high bioactivity and the surface morphology of HA were responsible for the efficient reproduction of HDB. It is concluded that HA is a potential candidate to replace the conventionally used activated carbon as a novel carrier applied in the filed of bioremediation for oil contaminated soil.


1991 ◽  
Vol 69 (10) ◽  
pp. 1511-1515 ◽  
Author(s):  
Awad I. Ahmed ◽  
S. E. Samra ◽  
S. A. El-Hakam

CuO–Al2O3 catalysts containing various amounts of copper oxide have been prepared by precipitation. The phase changes were studied by X-ray diffraction. The results obtained revealed that the thermal treatment of solid CuO–Al2O3 at 700 °C produced only crystalline CuO. Heating to 900 °C led to the formation of copper alumina spinel together with unreacted CuO and γ-Al2O3. The spinel content was found to increase with increasing copper content. Nitrogen adsorption–desorption isotherms on the calcined samples have been measured. Surface areas have been calculated and the pore structure analysed. The textural properties of the system were found to depend on both the copper content and the calcination temperature. Key words: CuO, Al2O3 catalysts, structure, surface area, pore structure.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4424 ◽  
Author(s):  
Mehrdad Khatami ◽  
Mina Sarani ◽  
Faride Mosazadeh ◽  
Mohammadreza Rajabalipour ◽  
Alireza Izadi ◽  
...  

Nanoparticles of cerium oxide CeO2 are important nanomaterials with remarkable properties for use in both industrial and non-industrial fields. In a general way, doping of oxide nanometric with transition metals improves the properties of nanoparticles. In this study, nickel- doped cerium oxide nanoparticles were synthesized from Stevia rebaudiana extract. Both doped and non-doped nanoparticles were characterized by X-ray diffraction, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray, Raman spectroscopy, and Vibrating-Sample Magnetometry analysis. According to X-ray diffraction, Raman and Energy Dispersive X-ray crystalline and single phase of CeO2 and Ni doped CeO2 nanoparticles exhibiting fluorite structure with F2g mode were synthesized. Field Emission Scanning Electron Microscopy shows that CeO2 and Ni doped nanoparticles have spherical shape and sizes ranging of 8 to 10 nm. Ni doping of CeO2 results in an increasing of magnetic properties. The enhancement of ultraviolet protector character via Ni doping of CeO2 is also discussed.


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8641-8652
Author(s):  
Jing Geng ◽  
Lu-Fei Li ◽  
Wen-Liang Wang ◽  
Jian-Min Chang ◽  
Chang-Lei Xia ◽  
...  

Characteristics of the char produced in the co-pyrolysis of used rubber and larch sawdust were studied in the conversion of low-valued pyrolysis char into value-added activated carbon using two-step co-pyrolysis, namely pyrolysis and activation processes. The physicochemical characteristics of the chars were examined by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The results revealed that after the two-step co-pyrolysis, the upgraded carbon had BET surface areas ranging from 600 m2 g−1 to 900 m2 g−1, which were higher than the requirements for activated carbon (American Water Works Association B600 standard). Additionally, as the sawdust/rubber ratio increased, the BET value increased accordingly. A possible reaction mechanism is proposed based on the experimental results during the activation process.


Clay Minerals ◽  
2012 ◽  
Vol 47 (2) ◽  
pp. 275-284 ◽  
Author(s):  
L. S. Belaroui ◽  
A. Bengueddach

AbstractThree types of AlFePILCs pillared clays have been prepared from Algerian clay precursors. They have been characterized and tested in the Baeyer–Villiger oxidation of cyclohexanone to caprolactone using benzaldehyde and oxygen as oxidant at room temperature. The structural and textural properties of the catalyst have been determined by X-ray diffraction, nitrogen adsorption-desorption isotherms and Mössbauer spectroscopy.The different activities of the clays have been related to their Fe contents and accessible surface areas. The induction period observed before the reaction started has been attributed to the dissolution of a portion of the Fe3+ cations, mediated by either the perbenzoic acid intermediate or the benzoic acid co-product. The reaction was indeed catalysed by a few ppm of dissolved iron cations and the catalysis of the Baeyer–Villiger oxidation reaction should mechanistically be considered as homogeneous.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (01) ◽  
pp. 21-27 ◽  
Author(s):  
Xueqing Qiu ◽  
Yingzhi Ma ◽  
Dafeng Zheng

A magnetic lignin-based nanomaterial (MLN) was prepared from alkaline lignin through an amination and precipitation strategy and characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG), Brunauer-Emmett-Teller (BET) method, scanning electron microscope (SEM), dynamic light scattering (DLS), and vibrating sample magnetometer (VSM). The results illustrated that MLN was thermostable and had an extensive degree of aminated lignin coating. The specific surface area of MLN was 65.43 m2/g, with the total pore volume of 0.311 cm3/g. The zeta potential of MLN was positive when pH was less than 2.9, and the saturation magnetization was 50.8 emu/g. The characterization data discovered that the physico-chemical properties of MLN were helpful for the adsorption application.


1988 ◽  
Vol 132 ◽  
Author(s):  
H. Hahn ◽  
J. Logas ◽  
H. J. Höfler ◽  
Th. Bier ◽  
R. S. Averback

ABSTRACTThe microstructure of nanocrystalline (n-) TiO2 was studied as a function of sintering temperature up to 1273 K. Grain growth was monitored using x-ray diffraction and scanning electron microscopy. Measurements of density and permeability of He and Ar were also conducted. The specific surface area and the total pore volume were determined quantitatively using the nitrogen adsorption method. These measurements revealed that highly compacted n-TiO2 had green body densities as high as 75 % of bulk density and that sintering occurred at much lower temperatures than in conventional powder. Densification proceeded by loss of the small pores first. The possibilities of achieving high densities with limited grain growth will be discussed.


2015 ◽  
Vol 671 ◽  
pp. 248-254
Author(s):  
Jia Li Gu ◽  
Li Jiang Lu ◽  
Song Liu ◽  
Min Shao ◽  
Guo Qing Zhang ◽  
...  

Using wool fibers as template and Ce (NO3)3•6H2O, PEG and NH3·H2O as precursors, micron-scale CeO2tubes composed of well-crystalline CeO2nanoparticles have been synthesized. Cerium oxide was first precipitated on the wool fibers by vapor deposition method, then the fibers were removed by a two-step calcination. The obtained products were characterized by scanning electron microscopy (SEM), thermogravimetric Analyzer (TGA), powder X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). The results show that intact tubes with a diameter of 8~12μm have been successfully prepared.


2017 ◽  
Vol 748 ◽  
pp. 441-445
Author(s):  
Gui Xi Xu ◽  
Shu Zhong Wang ◽  
Xiang Rong Luo ◽  
Ze Feng Jing

The Jurassic continental shale from northern Qaidam basin was selected as the research object, through the analysis of X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and nitrogen adsorption experiment, the mineral composition and pore structure characteristics of Jurassic continental shale from the northern Qaidam basin have been investigated in detail. All shale samples studied are quite rich in clay minerals. The clay mineral content ranges from 59.8% to 83.3% with an average of 74.6%, and the brittle mineral content accounts for 16.5% to 39.3%. Nitrogen adsorption test results indicate that for mesopores and macropores of shale samples the average pore width is 2~200 nm, mainly centering on 10~50 nm, and the micropores of the shale samples have a centralized distribution of 0.5~1 nm. The shale samples show high specific surface areas of 4.6~15.2 m2/g. According to SEM results, interparticle mineral matrix pores are main pore type and slit-type pore are well developed.


Sign in / Sign up

Export Citation Format

Share Document