scholarly journals Interfacial Reaction Analysis of Sn-Ag-Cu Solder Reinforced with 0.01wt% CNTs with Isothermal Aging

2016 ◽  
Vol 864 ◽  
pp. 175-179
Author(s):  
Mohamed Arif Azmah Hanim ◽  
M.N. Mohamad Aznan ◽  
R. Muhammad Raimi ◽  
A. Muhammad Azrol Amin

This study focused on the formation and growth of intermetallic compound (IMC) layer at the interfaces of pad finishes. The thickness of IMC layer, wetting angle, and defects such as floating IMC and voids formation after as reflow and isothermal aging were discussed. In this study, SAC237 (Sn: 99 wt.%, Ag: 0.3 wt.%, Cu: 0.7wt.%) reinforced with 0.01 wt.% of Multi-Walled Carbon Nanotubes (MWCNTs) were soldered on Electroless Nickel Immersion Gold (ENIG) and Immersion Tin (ImSn) pad finishes. Isothermal aging at 150°C for 400h, 800h, and 1200h were conducted after as reflow process. The IMC layer were analysed using optical microscope with image analyzer. The results shows the thickness of IMC layer for both ENIG and ImSn increased as the isothermal aging period increases. The increament was found from 1.49 μm to 1.73 μm for ENIG and 2.51 μm to 5.49 μm for ImSn. Floating IMC and voids formation were also observed on both pad finishes. Wetting angle for ENIG and ImSn varied from 16.21° to 36.85° and 24.27° to 34.41° respectively.

2016 ◽  
Vol 857 ◽  
pp. 76-78
Author(s):  
Norliza Ismail ◽  
Roslina Ismail ◽  
Nur Izni Abd Aziz ◽  
Azman Jalar

Wettability for lead free solder 99.0Sn-0.3Ag-0.7Cu (SAC237) with addition of different weight percentage carbon nanotube after thermal treatment was investigated. SAC 237 solder powder with flux was mixed with 0.01%, 0.02%, 0.03% and 0.04% carbon nanotubes (CNTs) to form SAC-CNTs solder paste. Printed solder paste on test board with Cu surface finish was then reflow under 270°C temperature and isothermal aging at 150°C for 0,200 and 400 hours. Wettability of SAC-CNT solder was determined by measuring contact angle using optical microscope and image analyzer. As a result, from reflow process right through 400 hours of thermal aging, SAC237 with 0.04% CNT has the lowest contact angle as compared to other SAC-CNTs and SAC237 solder. As a conclusion, addition of carbon nanotubes into solder SAC237 improved their wettability on Cu substrate, especially at 0.04% of CNTs.


2010 ◽  
Vol 160-162 ◽  
pp. 737-742 ◽  
Author(s):  
J.W. Zhang ◽  
Zhen Luo ◽  
Y.L. Li ◽  
J.D. Zhu ◽  
J. Hao

A simple and reliable welding method was developed to weld carbon nanotubes with the power supply here. The carbon nanotubes were synthesized chemical vapor deposition method and Multi-walled carbon nanotubes was uesd here. Firstly, apply less than 5 V voltages between carbon nanotubes when they were in close proximity under direct view of optical microscope. Then, let carbon nanotube contact with each other and increase the external voltage to 7–8V until carbon nanotube was attached to the end of the other, the two carbon nanotube join into a carbon nanotube. Furthermore, some experiments were implemented to analyze the reliability, the images of the weld joint and the weld strength all indicted this method were reliable.


2013 ◽  
Vol 650 ◽  
pp. 194-199 ◽  
Author(s):  
M.A. Azmah Hanim ◽  
A. Ourdjini ◽  
I. Siti Rabiatul Aisha ◽  
O. Saliza Azlina

The present study investigated the effect of isothermal aging up to 2000 hours on the intermetallics formed between Sn-4Ag-0.5Cu lead free solder on electroless nickel electroless palladium immersion gold surface finish (Ni-Pd-Au). For all parameters, aging have an effect of changing the intermetallic morphology to coarser and dense structure. The intermetallic compound formed for the interconnection of the lead free solder changes with increased aging time from (Cu,Ni)6Sn5 compound to (Ni,Cu)3Sn4. At the end of the 2000 hours aging time, it changes to Ni3Sn4. This is the effect of Cu element availability during the intermetallics growth process. Starting from as reflow process, (Pd, Ni)Sn4 intermetallics formed near the interface of the solder joint. The formation of the (Pd, Ni)Sn4 intermetallics act like a diffusion barrier to slow down the growth of interface intermetallics. Lastly, Au element was detected in the Pd-Sn based intermetallic after aging more than 1000 hours.


2016 ◽  
Vol 701 ◽  
pp. 127-131
Author(s):  
Hardinnawirda Kahar ◽  
Zetty Akhtar Abd Malek ◽  
Siti Rabiatull Aisha Idris ◽  
Mahadzir Ishak

The formation and growth of the intermetallic were frequently discussed since lead free solder took place replacing the lead solder. However, the effect of multiple reflow process on the intermetallic morphology that was subjected to aging still needs further investigation. Thus, this study aimed to investigate the effect of second reflow towards the intermetallic compound formation and growth. Two types of surface finishes were used such as Immersion Tin (ImSn) and Electroless Nickel Immersion Gold (ENIG). Both test boards were reflowed once with Sn-3Ag-0.5Cu at the temperature of 225 °C and soaking for 8 seconds. Then, they were reflowed again at the same temperature for 25 minutes prior to an isothermal aging process for 250, 500, 1000 and 2000 hours at the temperature of 150 °C. The ProgRes C3 IM7200 Optical Microscope and ImageJ were used for the microstructural study, which includes morphology and thickness. Results indicated that IMC thickness formed between solder and ImSn surface finish increased significantly with 1.28 µm incremental when exposed to the second reflow. Whereas the IMC thickness of ENIG surface finish was increased for up to 0.15 µm. In addition, ENIG showed higher activation energy as compared to ImSn.


2020 ◽  
Vol 7 (11) ◽  
pp. 115604
Author(s):  
Engin Ergul ◽  
Halil Ibrahim Kurt ◽  
Murat Oduncuoglu ◽  
Necip Fazil Yilmaz

2014 ◽  
Vol 695 ◽  
pp. 352-356
Author(s):  
Hardinna Wirda Kahar ◽  
A.M. Zetty Akhtar ◽  
Siti Rabiatull Aisha Idris ◽  
Mahadzir Ishak

This paper presents a study on relationship of cooling rates towards the intermetallic compound (IMC) morphology. Cooling rate is an important parameter as it has significant effect towards the IMC microstructure formation that indirectly affects solders joint reliability. However, there is still insufficient study regarding the effect of cooling rate on the IMC thickness and microstructure behavior by using Nickel Boron as surface finish material in the electronic packaging industry. In this study, Sn-3Ag-0.5Cu solder was used on Nickel Boron as coating layer. Cooling rates were obtained by cooling specimens in different media which is water and air. The elemental composition was confirmed using Energy-dispersive X-ray spectroscopy and the microstructure of each IMC then analyzed using optical microscope, image analyzer and ImageJ. In this study, faster cooling rate (water) found to provide thicker IMC (6μm) compared to the other medium used. The morphology shape of each IMC also differs between different medium of cooling. IMC that undergoes faster cooling showed continues like layer while the one using air cooling formed scallop like IMC.


2010 ◽  
Vol 638-642 ◽  
pp. 1148-1151 ◽  
Author(s):  
Chih Yao Chen ◽  
Jeng Kuei Chang ◽  
Kuan Yu Lin ◽  
Sung Ting Chung ◽  
Wen Ta Tsai

Nano-sized nickel particles were dispersed on multi-walled carbon nanotubes (MWCNTs) via an improved electroless deposition route using a supercritical CO2 fluid. The microstructure, chemical composition and crystallinity of the Ni-decorated CNTs were examined using a transmission electron microscope (TEM), an X-ray energy dispersive spectrometer (EDS), and an X-ray diffractometer (XRD), respectively. The analytical results indicate that, with assistance of the supercritical fluid, Ni nanoparticles with a diameter of approximately 10 nm can be uniformly dispersed on the surface of CNTs. The hydrogen storage capacity of the Ni-decorated CNTs was evaluated with a high-pressure microbalance at room temperature and under a hydrogen pressure of 6.89 MPa. The measured hydrogen adsorption amount of the Ni/CNTs nanocomposite was 1.06 wt%, which was much higher than 0.33 wt% found for the plain CNTs.


2013 ◽  
Vol 845 ◽  
pp. 76-80 ◽  
Author(s):  
Osman Saliza Azlina ◽  
Ali Ourdjini ◽  
Astuty Amrin ◽  
Idris Siti Rabiatull Aisha

The electronic packaging industry is now being driven towards smaller, lighter, and thinner electronic products but with higher performance and more functions. Thus, smaller solder ball sizes are needed for fine solder joint interconnections to fulfill these requirements. This study investigates the interfacial reactions during reflow soldering and isothermal aging between Sn-4.0Ag-0.5Cu (SAC405) and electroless nickel (boron)/ immersion palladium/immersion gold (EN(B)EPIG). Reliability of solder joint has also been investigated by performing solid state isothermal aging at 125 °C for up to 2000 hours. The results revealed that after reflow soldering, (Cu, Ni)6Sn5 IMC is formed between solder and substrate while after aging treatment another IMC was found between (Cu, Ni)6Sn5 and substrate known as (Ni, Cu)3Sn4. Aging time of solder joints resulted in an increase in IMC thickness and a change in morphology into more spherical, dense and with larger grain size. By using optical microscope, the average thickness of the intermetallics was measured and it found that the larger solder balls produced thicker IMC than the smaller solder balls during reflow soldering. However, after aging the smaller solders produced thicker IMC than the larger solders.


Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document