Study on Influential Factors of Grinding Surface Residual Stress in Dry for Controlling Workpiece Surface Integrity

2016 ◽  
Vol 874 ◽  
pp. 362-367
Author(s):  
Xiu Ming Zhang ◽  
Shi Chao Xiu ◽  
Li Juan Liu ◽  
Xiao Liang Shi

Surface integrity of workpiece, especially residual stress, has the significant effects on the precision, the reliability and the fatigue life of the mechanical products. Since the most of final surface integrity of workpiece depends on the grinding process in engineering, this paper analyzed the ground surface residual stress through simulation and experiment. Based on the finite element model, the coupling of thermal mechanical field of plane grinding was simulated. The effects of grinding parameters on residual stress were studied compared to the experiment results. In addition, some measures for reducing the residual tensile stress of workpiece surface in the grinding process were put forwarded.

2011 ◽  
Vol 487 ◽  
pp. 24-28
Author(s):  
Tan Jin ◽  
D.J. Stephenson ◽  
X.M. Sheng

The residual stress on the ground surface of workpiece in high efficiency deep grinding (HEDG) has been investigated. It has been found that the mechanism in forming the ground surface residual stress in HEDG is much different to that in the conventional shallow cut grinding process. It is not a thermally dominant event as in most of the shallow cut grinding mode; it is instead driven by the combined effects of both the thermal and mechanical loadings. The compressive plastic deformation near the workpiece surface during grinding and the short contact time in the HEDG regime, makes it possible to generate compressive surface stresses even when the surface temperatures are above 700-800°C.


2014 ◽  
Vol 1027 ◽  
pp. 115-118
Author(s):  
Xiu Ming Zhang ◽  
Li Juan Liu ◽  
Shi Chao Xiu

The surface residual stress and integrity of workpiece have significant effects on the precision, the reliability and the fatigue life of the mechanical products. Since the most final surface integrity of workpiece depends on the grinding process mainly in engineering, this paper analyzed the surface residual stress of ground surface through the simulation works. Based on the finite element model and the thermal mechanical coupling field of the surface grinding for 45 steel was simulated and analyzed. The distribution of the residual stress and the effects of grinding parameters on residual stress were discussed. In addition, the measures for improving the residual stress in ground surface were put forward.


2010 ◽  
Vol 126-128 ◽  
pp. 899-904 ◽  
Author(s):  
Guo Giang Guo ◽  
Zhi Qiang Liu ◽  
Xiao Jiang Cai ◽  
Qing Long An ◽  
Ming Chen

This paper investigates the surface integrity of Ti-6Al-4V in conventional grinding using SiC abrasive, it includes surface roughness, surface topography, surface residual stress and metallurgical structure alteration. The experiment result indicated that grinding depth and feed rate have significant effect on surface roughness. Workpiece ground surface was free of crack, but severe plastic deformation layer and light burn appeared because of chemical reactions and mechanical factors. Ground surface was in a state of high tensile residual stress, thermal cycling of surface layer had the greatest effect. The machined surface experienced microstructure alteration on the top layer of ground surface, a heat-affected zone (HAZ) was observed.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


2013 ◽  
Vol 753-755 ◽  
pp. 277-280 ◽  
Author(s):  
Wei Xiang Liu

Nano-ceramic materials had high hardness and wear resistance. Combined with current technology and cost saving, nanostructured coatings technology were carried out, using HVOF ( high velocity oxygen fuel) or plasma spraying technique can obtain high quality ceramic coating on metal substrate. Ceramic coatings produced cracks in the grinding due to grinding surface residual stress. the coatings grinding surface residual stress of engineering ceramics have been researched, grinding surface residual stress in the nanostructured ceramic coatings are being researched. the researches in this field include grinding process modeling, abrasives and grinding parameters, grinding process monitoring and control and realization of the software, the grinding mechanism and grinding damage on the surface, grinding force prediction, on-line detection, grinding on nanocoating material is a multivariable complex process.


2013 ◽  
Vol 770 ◽  
pp. 433-436
Author(s):  
Xin Li Tian ◽  
Jian Quan Wang ◽  
Bao Guo Zhang ◽  
Peng Xiao Wang

Fracture strength is one of the key mechanics performances for engineering ceramics products, greatly influenced by the microscopic topography and residual stress field of ground surface. In this work, several testing equipments, such as the metallurgical microscope, surface profiler and X ray residual stress tester were introduced to investigate the relationships between microscopic topography, surface roughness, residual stress and fracture strength of ground ceramics, after the surface grinding and mechanical polishing. The experimental results show that a smoother machined surface with low roughness and residual stress is obtained through polishing with absolute alcohol for 20 minutes; the fracture strength of Si3N4SiC and Al2O3 are increased by 6.64%8.18% and 6.58% respectively, comparing to the ceramics without polishing; the surface stress concentration and residual tensile stress of polished ceramics are both reduced after an appropriate time of polishing process, which causes a certain improvement of ground fracture strength.


2009 ◽  
Vol 69-70 ◽  
pp. 505-509
Author(s):  
X.Y. Wang ◽  
Qing Long An ◽  
Yun Shan Zhang ◽  
H. Xu ◽  
Ming Chen

Stainless 2Cr13 is used as petroleum pipe material for its good performance in condition of high temperature, high pressure and corrosive environment. Buttress thread turning is a type of heavy machining, which has a great influence on the residual stress of workpiece. Residual stress is usually determined by cutting parameters and tool geometries. Experiments with different geometrical tools were carried out and a finite element model was used to study the influence of tool geometries on the residual stress. Experimental and simulated results showed that relatively bigger rake angle and smaller corner radius make a relatively lower tensile residual stress of workpiece surface in dry turning buttress thread.


2011 ◽  
Vol 295-297 ◽  
pp. 78-82
Author(s):  
Yan Wu ◽  
Er Geng Zhang ◽  
Wen Zhong Nie

Based on the research for the structure of the ceramic nanocomposites’ intragranular for Al2O3/ZrO2(n),we did the test by the workpiece two-dimensional vibration grinding(WTDUVG), and focus on analyzing the characteristic and the effect element of the two-dimensional ultrasonic vibration grinding ceramic surface residual stress by the XRD diffraction. The result show that ceramic dimensional ultrasonic vibration grinding surface tensile stress is less than the same conventional grinding (CG) surface under tensile stress; two-dimensional ultrasonic vibration grinding surface residual compressive stress than conventional ground surface residual stress under the same grinding. Material removal mechanism of the grinding nature of the surface residual stress, when the material removaled by ductile deformation, grinding surface equal residual stress; when the material removaled by brittle- ductile mixed mode, the grinding surface tensile stress reduced, because the fracture of the ground surface, tensile stress released. As a results, the grit size of grinding wheel, Grinding depth and workpiece mechanical properties are the main technology factors affected the nature and size of the residual stress of ground surface.


2016 ◽  
Vol 686 ◽  
pp. 63-67
Author(s):  
Frantisek Holešovsky ◽  
Radek Lattner ◽  
Martin Novák ◽  
Milan Dian

The single tool grains affect the workpiece surface during grinding in the separated areas of deformation. The elastic and consequently plastic deformations occur at the engagement of grains. The friction of grain and material likewise the friction of elementary chip and grain acts simultaneously. These phenomena are accompanied with an origination of great amount of heat and high pressures and that is the reason for residual stress origin and formation in the ground surface. The residual stress is an important factor in influencing usable properties of machine parts. The stress influences not only the dynamical load capacity of surface but the durability and quality of design units as well. This stress is considered as the source of so called technological notches, having an influence on corrosion resistance, wear resistance, and dimension stability of machine parts.


2010 ◽  
Vol 97-101 ◽  
pp. 2356-2360 ◽  
Author(s):  
Shu Dong Xiu ◽  
Zhi Jie Geng

In point grinding process, the contact area of point grinding is much smaller than that of conventional cylindrical grinding under same conditions, so the grinding power and heat to measure is lower and the cooling condition is improved obviously. For green manufacturing, the point grinding process has the significance to reduce the consumption of grinding fluid and improve ground surface integrity and greenness. This study analyzes the geometric configuration of the contact area between wheel and workpiece in point grinding process, establishes the geometric and mathematic models of the contact area, and investigates the relations between the grinding parameters and the grinding power by the simulations. The MQL and semi-dry point grinding experiments are performed on the ground surface integrity. These investigations show that the MQL and semi-dry grinding can be achieved in point grinding process under less contact area and higher jet pressure condition for the high greenness demand.


Sign in / Sign up

Export Citation Format

Share Document