An Investigation into the Dependency of Cutting Forces on the Volume Fraction and Fibre Orientation during Machining Composite Materials

2017 ◽  
Vol 882 ◽  
pp. 61-65
Author(s):  
Fadi Kahwash ◽  
Islam Shyha ◽  
Alireza Maheri

This paper presents an empirical force model quantifying the effect of fibre volume fraction and fibre orientation on the cutting forces during orthogonal cutting of unidirectional composites. Glass fibre plates and high speed steel cutting tools are used to perform orthogonal cutting on shaping machine whereas cutting forces are measured using platform force dynamometer. The analysis of forces shows almost linear dependency of cutting forces on the fibre content for both cutting and thrust forces. High dependency of cutting forces is also observed on fibre orientation with high percentage contribution ratio (up to 95.31%). Lowest forces corresponded to 30o and highest to 90o fibre orientation. Multivariate regression technique is used to construct the empirical model.

Author(s):  
Ali Mkaddem ◽  
Mohamed El Mansori

This paper discusses a numerical analysis of polymer-matrix composites cutting. Focus is put on the sensitivity of friction to both the fibre orientation and fibre volume fraction. Firstly, a theoretical model based on decomposition technique was proposed for predicting the evolution of friction coefficient with the parameters considered. Secondly, the numerical model was built, for orthogonal cutting configuration and equivalent homogeneous material assumption, using Abaqus/Explit FE code. For enhancing the simulation of chip formation, adaptive mesh technique with kill element option was used in the dynamic explicit analysis. The model assumes plane stress state and orthotropic behaviour. Hashin damage model was considered for simulating the damage initiation mechanisms and material failure modes. The results showed an increase of both the thrust and cutting force with fibre volume fraction. The predictions confirmed the high dependency of chip formation on reinforcement percentage. The advantage of adaptive mesh on predicting the damage localization was further proved.


2017 ◽  
Vol 25 (5) ◽  
pp. 315-326 ◽  
Author(s):  
Christian Schillfahrt ◽  
Ralf Schledjewski

Biaxial braided sleevings are commonly used for producing hollow complex-shaped composite parts through bladder inflation moulding. To enable feasibility analyses, part design and the prediction of mechanical properties of the resulting fibre-reinforced component, various geometrical and weight-related parameters of the braided fabric in its draped state must be known, such as fibre orientation, fibre volume fraction and areal weight. In the present work, a comprehensive analytical model describing fabric formation, preform architecture and weight as well as the change of relevant textile parameters of a biaxial braided sleeving during draping is established. The principal modelling approach is based on sporadic investigations found in literature and was substantially expanded to compile an extensive collection of relationships for the utilisation in a sleeving-on preforming process. Furthermore, a critical overview about the state of the art in the area of geometrical modelling of tubular 2D braided structures and a comparison of the identified procedures in regard to the desired application is given.


2021 ◽  
pp. 096739112110239
Author(s):  
Sheedev Antony ◽  
Abel Cherouat ◽  
Guillaume Montay

Nowadays natural fibre composites have gained great significance as reinforcements in polymer matrix composites. Composite material based on a polymer matrix reinforced with natural fibres is extensively used in industry due to their biodegradability, recyclability, low density and high specific properties. A study has been carried out here to investigate the fibre volume fraction effect of hemp fibre woven fabrics/PolyPropylene (PP) composite laminates on the tensile properties and impact hammer impact test. Initially, composite sheets were fabricated by the thermal-compression process with desired number of fabric layers to obtain composite laminates with different fibre volume fraction. Uniaxial, shear and biaxial tensile tests were performed and mechanical properties were calculated. Impact hammer test was also carried out to estimate the frequency and damping parameters of stratified composite plates. Scanning Electron Microscope (SEM) analysis was performed to observe the matrix and fibre constituent defects. Hemp fabrics/PP composite laminates exhibits viscoelastic behaviour and as the fibre volume fraction increases, the viscoelastic behaviour decreases to elastic behaviour. Due to this, the tensile strength increases as the fibre content increases. On the other hand, the natural frequency increases and damping ratio decrease as the fibre volume fraction increases.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
A. Shalwan ◽  
M. Alajmi ◽  
A. Alajmi

Using natural fibres in civil engineering is the aim of many industrial and academics sectors to overcome the impact of synthetic fibres on environments. One of the potential applications of natural fibres composites is to be implemented in insulation components. Thermal behaviour of polymer composites based on natural fibres is recent ongoing research. In this article, thermal characteristics of sisal fibre reinforced epoxy composites are evaluated for treated and untreated fibres considering different volume fractions of 0–30%. The results revealed that the increase in the fibre volume fraction increased the insulation performance of the composites for both treated and untreated fibres. More than 200% insulation rate was achieved at the volume fraction of 20% of treated sisal fibres. Untreated fibres showed about 400% insulation rate; however, it is not recommended to use untreated fibres from mechanical point of view. The results indicated that there is potential of using the developed composites for insulation purposes.


2013 ◽  
Vol 746 ◽  
pp. 385-389
Author(s):  
Li Yan Liu ◽  
Yu Ping Chen ◽  
Jing Zhu

This paper is aiming to develop the cattail fibre as reinforcing material due to its environmental benefits and excellent physical and insulated characteristics. The current work is concerned with the development of the technical fibres from the original plant and research on their reinforcing properties in the innovative composites. Polypropylene (PP) fibre was used as matrix in this research which was fabricated into fibre mats with cattail fibre together with different fibre volume fractions. Cattail fibre reinforced PP laminates were manufactured and compared with jute/PP composites. The tensile and bending properties of laminates were tested. The SEM micrographs of fracture surface of the laminates were analyzed as well. The results reveal that the tensile and bending properties of cattail/PP laminates are closed to those of jute/PP composites. The mechanical properties of cattail/jute/PP laminates with fibre volume fraction of 20/35/45 is betther than those of laminate reinforced with cattail fibers.


Author(s):  
Ashwani Pratap ◽  
Karali Patra

Abstract This work presents an analytical cutting force modeling for micro-slot grinding. Contribution of the work lies in the consideration of both primary and secondary tool surface interactions with the work surface as compared to the previous works where only primary tool surface interaction was considered during cutting force modeling. Tool secondary surface interaction with workpiece is divided into two parts: cutting/ ploughing by abrasive grits present in exterior margin of the secondary tool surface and sliding/adhesion by abrasive grits in the inner margins of the secondary tool surface. Orthogonal cutting force model and indentation based fracture model is considered for cutting by both the abrasives of primary tool surface and the abrasives of exterior margin on the secondary surface. Asperity level sliding and adhesion model is adopted to solve the interaction between the workpiece and the interior margin abrasives of secondary tool surface. Experimental measurement of polycrystalline diamond tool surface topography is carried out and surface data is processed with image processing tools to determine the tool surface statistics viz., cutting edge density, grit height distribution and abrasive grit geometrical measures. Micro-slot grinding experiments are carried out on BK7 glass at varying feed rate and axial depths of cut to validate the simulated cutting forces. Simulated cutting forces considering both primary and secondary tool surface interactions are found to be much closer to the experimental cutting forces as compared to the simulated cutting forces considering only primary tool surface interaction.


2000 ◽  
Author(s):  
Paul A. Clayton ◽  
Mohamed A. Elbestawi ◽  
Tahany El-Wardany ◽  
Dan Viens

Abstract This paper presents a five-axis milling force model that can incorporate a variety of cutters and workpiece materials. The mechanistic model uses a discretized cutting edge to calculate an area of intersection which is multiplied by the specific cutting pressure to produce a force output along the primary cartesian coordinate system. By using an analytic description of the cutting edge with a non-specific cutter and workpiece intersection routine, a model was created that can describe a variety of cutting situations. Furthermore, a back propagation neural network is used to calibrate the model, providing robustness and scalability to the calibration process. Testing was performed on 1020 steel using various cutting parameters with a high speed steel two flute cutter and a tungsten carbide insert cutter. Furthermore, both linear cuts and a test die surface yielded good agreement between predicted and measured results.


2018 ◽  
Vol 279 ◽  
pp. 3-9
Author(s):  
Fethi Benkhenafou ◽  
Ines Fernández Pariente ◽  
F.Javier Belzunce ◽  
Abdelkader Ziadi ◽  
Ming Quan Shi ◽  
...  

Microstructure, hardness and fracture toughness of low and high chromium high speed steel used in hot strip mills and subjected to conventional heat treatment have been examined. The influence of tempering temperatures on the mechanical properties of these products, determined using tensile and fracture toughness tests, was studied in this research work. The developed microstructures have been characterized by XRD, optical microscopy and SEM examinations. Macrohardness and microhardness of the specimens have been evaluated by Vickers indentation technique. The fracture toughness of these products was investigated using the rupture weight on 3 points bending specimens. The plane strain fracture toughness KIc and the fracture strength were measured for each alloy. The shell is high harness high speed steels, and the core is nodular cast iron. It was found that most fracture occurred in the eutectic carbides formed by the high content alloy element, such as Mo,V,Cr, but that for the alloys with a reduced volume fraction of eutectic carbides, a small amount of crack propagation occurred in the austenitic dendrites.


Sign in / Sign up

Export Citation Format

Share Document