Microstructural Investigation and Characterization of Bulk Brass Melted by Conventional and Microwave Processing Methods

2017 ◽  
Vol 890 ◽  
pp. 356-361 ◽  
Author(s):  
Lingappa M. Shashank ◽  
M.S. Srinath ◽  
Hassan Jayaraj Amarendra

Microwave processing of bulk metallic materials is an emerging area. In the present work, brass in bulk form is melted in a modified domestic microwave oven operating at 2.45 GHz frequency. As-received and the as-cast brass are subjected to metallurgical and mechanical characterization. Specimens’ surface morphology is studied under Scanning Electron Microscope (SEM). X-Ray Diffraction (XRD) pattern shows the presence of copper oxides phase in both cast brass. Average tensile strength of brass melted using microwave oven is found higher when compared with brass melted in muffle furnace. Hardness of the as-cast brass is found to be higher than the as-received brass. However, brass cast by microwave irradiation exhibits around 2 % higher hardness than the brass cast by conventional heating. Microwave melting of brass consumed nearly six times less time compared to conventional melting.

Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2013 ◽  
Vol 372 ◽  
pp. 62-65 ◽  
Author(s):  
Sharifah Adzila ◽  
Singh Ramesh ◽  
Iis Sopyan ◽  
C.Y. Tan ◽  
Mohd. Hamdi ◽  
...  

In this study, the mechanochemical method was employed to synthesize hydroxyapatite (HA) and magnesium (Mg) doped hydroxyapatite (HA) powders. The effect of Mg2+ into the synthesized HA powder properties were investigated. Characterization of the synthesized HA and Mg doped HA at various concentrations (1% - 5% MgHA) were accomplished through X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses. nanosize of HA and Mg doped HA powders were successfully synthesized through the present method as indicated from the different peaks intensity and adsorption bands obtained in XRD pattern and FTIR respectively.


2015 ◽  
Vol 659 ◽  
pp. 127-131
Author(s):  
Usanee Malee ◽  
Sakdiphon Thiansem

The scientific process was used to explain characterization and physical properties of the clay sample close to the ancient Nan kiln site. These samples were obtained from JQA, FQB, PQC and NQD. X-ray diffraction (XRD) and X-ray fluorescence (XRF) technique were used to determine the chemical composition and phase transformation before and after fired at 800-1250 °C. XRF result was confirmed that all clay samples mainly contained SiO2(>80 wt. %) XRD pattern indicated that quartz was the majority of phase in the all of them. High amount of Fe2O3(>1.6 wt. %) was related to the red-brown tone color. The clay sample could be fired up to 1280 °C without wrapping behavior; it was found that FQB clay had the highest firing resistance due to the maximum quartz content.


2014 ◽  
Vol 979 ◽  
pp. 440-443
Author(s):  
W. Siriprom ◽  
K. Teanchai ◽  
S. Kongsriprapan ◽  
J. Kaewkhao ◽  
N. Sangwaranatee

The chemical and physical properties of topsoil and subsoil which collected from the cassava cropping area in Chonburi Province have been investigated. The characterization of both soil sample were used X-Ray Diffraction (XRD), Energy Dispersive X-Ray Fluorescence (EDXRF) while FTIR used to confirmed the formation of intermolecular bonding and Thermo-Gravimetric Analysis (TGA) used for investigated the crystalline. It was found that, the XRD pattern indicated quartz phase. The chemical composition by XRF reported that the soils samples consist of Si, Al, Ca, Fe, K, Mn, Ti, Cr, Zn, Ag and Cu. and TGA results, noticed that the removal of moisture and organics material.


2010 ◽  
Vol 663-665 ◽  
pp. 1325-1328 ◽  
Author(s):  
De Hui Sun ◽  
De Xin Sun ◽  
Yu Hao

The superparamagnetic NiFe2O4 nanoparticles were synthesized using a hydrothermal technology through P123 sphere micelles as ‘nanoreactor’ in this work. Their morphologies, structures, surface properties and magnetism were characterized by FE-SEM, XRD, FTIR, and VSM, respectively. The nickel ferrite samples are nearly spherical and homogeneous nanoparticles with average size range of about 50-120 nm. They possess superparamagnetism at room temperature and higher saturation magnetization. X-ray diffraction (XRD) pattern confirms that the samples belong to the cubic crystal system with an inverse-spinel structure. Fourier transform infrared (FTIR) absorption spectrum indicates that the NiFe2O4 nanoparticles are stabilized by the P123 adsorbed on the surface of nanoparticles.


2016 ◽  
Vol 701 ◽  
pp. 18-22 ◽  
Author(s):  
Mohd Junaedy Osman ◽  
Wan Md Zin Wan Yunus ◽  
Keat Khim Ong ◽  
Noor Azilah Mohd Kasim ◽  
Siti Hasnawati Jamal ◽  
...  

Modification of multi-walled carbon nanotube (MWCNT) plays an important role to produce MWCNT crossbreeds that may be useful for exploration of new materials. In this report, characterization of dimethyl dioctadecylammonium bromide (DDOAB) modified multi-walled carbon nanotube (Mo-MWCNT) using Fourier Transform Infrared (FTIR) spectroscopy and Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) is described. FTIR shows the presence of both aliphatic (CH stretching and CH bending) and ammonium (CN stretching) groups from DDOAB and the existence of C=C aromatic functional group from the structure of MWCNT in Mo-MWCNT spectra. This result was supported by TGA result which suggests that there are weight losses due to the degradation of DDOAB (between 250 °C to 500 °C) in the product. In addition, XRD pattern remain after modification suggesting attachment of MWCNT and DDOAB occurs at the surface of MWCNT.


2007 ◽  
Vol 336-338 ◽  
pp. 669-671
Author(s):  
Yan Yi Liu ◽  
Wei Pan

BaTiO3 powder was synthesized from BaCO3 and TiO2 using a domestic microwave oven. The samples were synthesized under different temperatures with various holding times. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to examine the phase compositions and morphologies of the result samples. The main phase obtained at 950°C was BaTiO3, and the intermediate phases Ba2TiO4 and Ba4TiO9 were also detected. The pure, well-crystallized BaTiO3 powder could be obtained at 1050°C within 10 minutes and the particle size ranged from 300~500nm. In comparison with conventional synthesis, faster speed and finer grains could be achieved through microwave heating.


2018 ◽  
Vol 766 ◽  
pp. 217-222
Author(s):  
Suphaporn Daothong

Iron oxide nanowires were synthesized on stainless steel mesh substrate using the thermal oxidation process at the varying temperature of 750°C for 60 min. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD pattern showed that the iron oxide nanowires exhibited the structure of alpha-Fe2O3 (hematite). SEM images indicated that the diameter and the length of the nanowires were 80 to 285 nm and more than 5 μm, respectively. The dye-sensitized solar cell (DSC) properties based on the nanowires substrate was also studied. It was found that the power conversion efficiency (η) of the device was 0.11%.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012047
Author(s):  
L D Anbealagan ◽  
T L Chew ◽  
Y F Yeong ◽  
Z A Jawad ◽  
C D Ho

Abstract Over the years, functionalization of zeolite is gaining popularity among researchers to further modify the properties of the zeolite for wide applications. The procedure of functionalization is crucial to ensure that the framework and structure of the zeolite would not be destroyed by the functionalization process. In this work, zeolite AlPO-18 was synthesized via hydrothermal synthesis method and functionalized by (3-Aminopropyl) triethoxysilane (APTES). The effect of the APTES functionalization on zeolite AlPO-18 was investigated in this work. Both unfunctionalized and silane-functionalized zeolite AlPO-18 were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and Thermogravimetric analysis (TGA) for their properties. The morphology and the composition of the elements present in zeolite AlPO-18 and zeolite NH2-AlPO-18 were examined using Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive spectroscopy (EDX) respectively. The XRD pattern of NH2-AlPO-18 was similar to that of zeolite AlPO-18, however, the intensity of the peaks was lower compared to zeolite AlPO-18. Based on the FTIR spectra, the presence of N-H stretching and bending vibration band of aminosilane were observed in the NH2-AlPO-18 sample. According to FESEM images, the morphology of NH2-AlPO-18 was comparable to that of zeolite AlPO-18 even after functionalization, proving that functionalization of aminosilane on zeolite does not affect on the zeolite structure. Besides that, EDX proves the presence of 3.02 % of element N in the NH2-AlPO-18 sample which is absent in the zeolite AlPO-18 sample. All of the characterizations evinced the presence of aminosilane, APTES in the NH2-AlPO-18 sample.


Sign in / Sign up

Export Citation Format

Share Document