Study on Ballistic Energy Absorption Capability of Glass-Epoxy and Jute-Epoxy-Rubber Sandwich Composites

2018 ◽  
Vol 928 ◽  
pp. 14-19
Author(s):  
Sangamesh Rajole ◽  
K.S. Ravishankar ◽  
S.M. Kulkarni

High velocity impact analysis of natural fiber reinforced composites is essential as the trend is focused towards the development of light weight, environment-friendly, non-corrosive and economical materials. At present, the defence, aerospace and automobile sectors are using synthetic fiber composites which are expensive and non-eco-friendly. In the present study ballistic impact of jute-epoxy (JEC), glass-epoxy (GEC), jute-epoxy-rubber (JERC) sandwich composites are simulated with different thickness (1, 2 and 3 mm) and velocity variations (100, 200 and 300m/s) using Finite Element analysis software. Although different approaches to the analysis of the effect response of composite structures are available, numerical modeling is based on strict constitutive models is often preferred because it can provide valuable detailed information about the spatial and temporal distribution of damage during the impact. The ballistic parameters such as energy absorption, ballistic limit and fracture behaviors are predicted. The composite is made of 8 noded linear brick elements and the bullet/projectile is modeled as a discrete rigid element in which deformation behavior, energy absorption and penetration behaviors obtained are clearly represented. The simulation results predicted match well with the analytical results obtained. Among all the combination of the materials simulated, the sandwiches have better ballistic qualities. Energy absorption of sandwich (JERC) was found 67 percentage higher than GEC and 56 percentage higher than JEC laminate. In future, these materials can be the alternative materials for defence sector for bullet proofing.

2006 ◽  
Vol 532-533 ◽  
pp. 993-996
Author(s):  
Anthony Yee Kai Yam ◽  
Kai Leung Yung ◽  
Chi Wo Lam

Toys that are free from drop failures normally take a long time to develop. It is often time and cost consuming after the production tooling is built to detect drop test failure. This paper introduces a new drop testing analysis method for Toys. The method uses a simple approach with a local analysis that based on the linear and non linear finite element analysis. Modeling and transient drop analysis of a pre-school toy is used as a case study to demonstrate the method. The impact analysis of the product hitting the solid concrete floor after a free fall is presented. The analysis focuses on the deformation of the housing for a product with electronic circuit and mechanical mechanism inside. Experimental data has been obtained for drop simulation of the housing and its correlation with the plastic material properties. The stress and strain of the housing during drop impact tests are noted. The effects of the material properties to the housing deflection under drop/impact shock have been investigated. Numerical results are compared with experimental results to validate the method.


2018 ◽  
Vol 52 (21) ◽  
pp. 2859-2874 ◽  
Author(s):  
Martin Schwab ◽  
Melanie Todt ◽  
Heinz E Pettermann

A computationally efficient multiscale modelling approach for predicting impact damage within fabric reinforced laminated composites is presented. In contrast to common ply-level approaches, the topology of a multi-layered fabric reinforced laminate is resolved at tow-level for a sub-domain embedded in a shell layer with homogenised representation of the laminate. The detailed sub-domain is entirely modelled using shell elements, where material nonlinearities such as damage and plasticity-like behaviour of the tows, inelastic behaviour of unreinforced resin zones up to failure and delamination between plies are accounted for. To exemplify the capabilities of the approach, an explicit finite element simulation of a laminated plate consisting of eight carbon fabric reinforced epoxy plies with eight harness satin weaving style in a drop weight impact test setup is conducted. The spatial and temporal distribution of intra- and inter-ply damage is predicted and the total energy absorption by the plate, as well as the contributions of individual damage mechanisms are evaluated. The predictions show very good agreement with corresponding experimental data from the literature and give insight into the impact behaviour of the laminate beyond the capability of usual experiments. The new approach allows to resolve the stress concentrations due to fabric topology in detail. Compared to common ply-level approaches this is reflected in different predicted energy absorptions per mechanism although, the total energy absorption hardly differs. This is especially important when the post impact behaviour of laminates is predicted as it is strongly influenced by the extent of the individual damage mechanisms.


Author(s):  
Laura Ferrero ◽  
Ugo Icardi

In this paper, multiple cores sandwich composites undergoing impact loads are optimized in order to improve their resistance to the impact-induced delamination. This peculiar type of composites is characterized by one internal face splitting the core in two parts. Owing to their architecture with an intermediate and two external faces, their additional tailoring capability offers potential advantages in terms of energy absorption capability and damage tolerance behavior over conventional sandwich composites. Obviously, an accurate assessment of the interfacial stress fields, of their damage accumulation mechanisms and of their post-failure behavior are fundamental to fully exploit their potential advantages. Despite it is evident that structural models able to accurately describe the local behavior are needed to accomplish this task, the analysis is commonly still carried out using simplified sandwich models which postulate the overall variation of displacements and stresses across the thickness, because more detailed models could make the computational effort prohibitively large. No attempt is here made to review the ample literature about the sandwich composite models, since a plenty of comprehensive bibliographical review papers and monographs are available in the specialized literature. Likewise, no attempt is made for reviewing the methods used to model the damage. It is just remarked that the models to date available range from detailed models which discretize the real structure of the core, to FEM models by brick elements, to discrete-layer models and to sublaminate models. In these paper, two different models are used, to achieve a compromise between accuracy and limitation of costs. The time history of the contact force is computed by a C° eight-node plate element based on a 3D zig-zag model, in order to achieve the best accuracy using a plate model with the customary five functional d.o.f. This model is also used in the optimization process, since it is mathematically easily treatable and accurately describes the strain energy. In addition, it enables a comparison with the classical plate models, since they can be particularized from it. The counterpart plate element of this zig-zag model, which is obtained from a standard C° plate element through a strain energy updating (which successfully described the impact induced damage as shown by the comparison with the damage detected by c-scanning in a previous paper), is used for computing the contact force time history, to reach a good compromise between accuracy and computational costs. A mixed brick element with the three displacements and the three interlaminar stresses as nodal d.o.f. is used to compute the damage at each time step. The onset of damage is predicted in terms of matrix and fibers failure, cracks, delamination, rippling, wrinkling and face damping using different stress-based criteria. In this paper the effects of the accumulated damage are accounted for through the ply-discount theory, i.e. using reduced elastic properties for the layers and the cores that failed, although it is known that some cases exist for which this material degradation model could be unable to describe the real loss of load carrying capacity. The optimization technique recently proposed by the authors is used in this paper for optimizing the energy absorption properties of multi-core sandwiches undergoing impact loads. The effect of this technique is to act as an energy absorption tuning, since it minimizes or maximizes the amount of energy absorbed by specific modes through a suited in-plane variation of the plate stiffness properties (e.g., bending, in-plane and out-of-plane shears and membrane energies). The appropriate in-plane variable distributions of stiffness properties, making certain strain energy contributions of interest extremal, are found solving the Euler-Lagrange equations resulting from assumption of the laminate stiffness properties as the master field and setting to zero the first variation of wanted and unwanted strain energy contributions (e.g., bending, in-plane and out-of-plane shears and membrane energies). Our purpose is to minimize the energy absorbed through unwanted modes (i.e., involving interlaminar strengths) and maximize that absorbed through desired modes (i.e., involving membrane strengths). The final result is a ply with variable stiffness coefficient over its plane which is able to consistently reduce the through-the-thickness interlaminar stress concentrations, with beneficial effects on the delamination strength. All the solutions proposed can be obtained either varying the orientation of the reinforcement fibers, the fiber volume rate or the constituent materials by currently available manufacturing processes. The coefficients of the involved stiffness terms are computed enforcing conditions which range from the thermodynamic constraints, to imposition of the mean stiffness, to the choice of a convex or a concave shape (in order to minimize or maximize the energy contributions of interest). Two solutions of technical interest will be proposed, which both are based on a parabolic distribution of stiffness coefficients. The former reduces the bending of a lamina with moderately increasing the shear stresses, the second one reduces these stresses with a low increment in the bending contribution. The effects of the incorporation of these layers (with the same mean properties of the layers they replace) is shown hereafter.


2020 ◽  
Vol 10 (2) ◽  
pp. 684 ◽  
Author(s):  
Mohamad Zaki Hassan ◽  
S. M. Sapuan ◽  
Zainudin A. Rasid ◽  
Ariff Farhan Mohd Nor ◽  
Rozzeta Dolah ◽  
...  

Banana fiber has a high potential for use in fiber composite structures due to its promise as a polymer reinforcement. However, it has poor bonding characteristics with the matrixes due to hydrophobic–hydrophilic incompatibility, inconsistency in blending weight ratio, and fiber length instability. In this study, the optimal conditions for a banana/epoxy composite as determined previously were used to fabricate a sandwich structure where carbon/Kevlar twill plies acted as the skins. The structure was evaluated based on two experimental tests: low-velocity impact and compression after impact (CAI) tests. Here, the synthetic fiber including Kevlar, carbon, and glass sandwich structures were also tested for comparison purposes. In general, the results showed a low peak load and larger damage area in the optimal banana/epoxy structures. The impact damage area, as characterized by the dye penetration, increased with increasing impact energy. The optimal banana composite and synthetic fiber systems were proven to offer a similar residual strength and normalized strength when higher impact energies were applied. Delamination and fracture behavior were dominant in the optimal banana structures subjected to CAI testing. Finally, optimization of the compounding parameters of the optimal banana fibers improved the impact and CAI properties of the structure, making them comparable to those of synthetic sandwich composites.


2012 ◽  
Vol 174-177 ◽  
pp. 2122-2125
Author(s):  
Hua Ma ◽  
Hong Huan Wang ◽  
Zhen Bao Li ◽  
Xin Yu Sun ◽  
Xue Wei Zhang

In this paper, the analysis work is conducted for simulating the experimental study on the energy absorption columns performed previously. The software ABAQUS is used for fulfillment of the research. The concrete damage plasticity model is adopted for the calculation of the macro-synthetic fiber-reinforced concrete material used in the columns. The viscosity coefficient and the damage factore of concrete are discussed, and the results analyzed agree with experimented.


2011 ◽  
Vol 243-249 ◽  
pp. 3147-3150
Author(s):  
Shu Xian Liu ◽  
Xiao Gang Wei ◽  
Shu Hui Liu ◽  
Li Ping Lv

Disaster caused by exploiting underground coal is due to original mechanical equilibrium of underground rock has been destroyed when underground coal is exploited. And Stress redistribution and stress concentration of wall rock in the goaf happened too. As many complex factors exist such as complex structures of ground, multivariate stope boundary conditions, many stochastic mining factors and so on, it is difficult to evaluate the damage of the geological environment caused the excavation by surrounding underground coal accurately. Besides that, the coexistence of continuous and discontinuous of deformation and failure of wall rock make a strong impact on the ground, and the co-exist of tension, compression and shear failure also pay a great deal contribution to the destroy. Due to the mechanical property and deformation mechanism of goaf are complex , changeable, nonlinear and probabilistic, which changes with in space and time dynamically, it can not be studied analytically by the classical mathematical model and the theory of mechanics computation. Through finite element analysis software ABAQUS, a numerical simulation of the process of underground coal mining have been made. After make a research of the simulation process, it shows the change process of stress environment of wall rock and deformation and failure process of rock mass during the process of coal mining. The numerical simulation of the process can provide theoretical basis and technical support to the protection and reinforcement of laneway the process of coal excavation. Besides that, it also provides a scientific basis and has a great significance to reasonable Excavation and control of mind-out area.


Author(s):  
Kumarswamy Karpanan ◽  
Craig Hamilton-Smith

Subsea oil and gas production involves assemblies such as trees, manifolds, and pipelines that are installed on sea floor. Each of these components is exposed to severe working conditions throughout its operational life and is difficult and expensive to repair or retrieve installed. During installation and operation, a rig/platform and several supply vessels are stationed on the waterline directly above the well and installed equipment below. If any object is to be dropped overboard, it presents a hazard to the installed equipment. A subsea tree comprises of a number of critical components such as valves and hydraulic actuators, in addition to several electrical components such as the subsea control module and pressure/temperature gauges. Their ability to operate correctly is vital to the safe production of oil and gas. If an object were to impact and damage these components, resulting in their inability to operate as intended, the consequences could be severe. In this paper, a typical subsea tree frame is analyzed to ensure its ability to withstand the impact from an object accidentally dropped overboard. This was accomplished using nonlinear dynamic Finite Element Analysis (FEA). In this study, the framework was struck by a rigid body at terminal velocity, resulting in a given impact energy. Displacements and resultant strain values at critical locations were then compared to allowable limits to ensure compliance to the design requirements.


Author(s):  
Alejandro Maranon ◽  
Yan Sanabria ◽  
Mari´a F. Contreras ◽  
Wilson Hormaza

Laminated composites made of natural fiber and polymeric resins have a strong potential for engineering applications as they offer an attractive combination of mechanical and physical properties together with their environmental friendly character. Among structural applications, hybrid ballistic systems made of natural fiber composites have attracted the attention of engineers and scientists because of their excellent energy absorption compared to mild steel. In this paper, the impact and tensile properties of fique fibers (fucraea) reinforced composites are investigated. Plain woven fique-fabrics were embedded in polyester resin to produce five ply laminated panels. It was found that fique composites exhibited similar energy absorption than other natural composites reported in the literature.


2006 ◽  
Vol 306-308 ◽  
pp. 739-744 ◽  
Author(s):  
Xiao Dong Cui ◽  
Tao Zeng ◽  
Dai Ning Fang

The impact response and energy absorbing characteristics of laminated, foam sandwich and honeycomb sandwich composites under ballistic impact have been studied in this investigation. An improved model is proposed in this paper to predict the ballistic property of the laminated composites. In this model, the material structures related to fiber lamination angles are designed in terms of their anti-impacting energy absorption capability. The ballistic limit speed and energy absorption per unit thickness of the three composites under different conditions are calculated. It is shown that honeycomb sandwich composite has the best ballistic resistance capability and energy absorption property among the three composites.


Author(s):  
Wei Zhang ◽  
Anil Erol ◽  
Saad Ahmed ◽  
Sarah Masters ◽  
Paris von Lockette ◽  
...  

Active origami designs, which incorporate smart materials such as electroactive polymers (EAPs) and magnetoactive elastomers (MAEs) into mechanical structures, have shown good promise in engineering applications. In this study, finite element analysis (FEA) models are developed using COMSOL Multiphysics software for two configurations that incorporate a combination of active and passive material layers, namely: 1) a single-notch unimorph folding configuration actuated using only external electric field and 2) a bimorph configuration which is actuated using both electric and magnetic (i.e. multifield) stimuli. Constitutive relations are developed for both electrostrictive and magnetoactive materials to model the coupled behaviors directly. Shell elements are adopted for their capacity of modeling thin films, reduction of computational cost and ability to model the intrinsic coupled behaviors in the active materials under consideration. A microstructure-based constitutive model for electromechanical coupling is introduced to capture the nonlinearity of the EAP’s relaxor ferroelectric response; the electrostrictive coefficients are then used as input in the constitutive modeling of the coupled behavior. The magnetization of the MAE is measured by experiment and then used to calculate magnetic torque under specified external magnetic field. The objective of the study is to verify the effectiveness of the constitutive models to simulate multi-field coupled behaviors of the active origami configurations. Through quantitative comparisons, simulation results show good agreement with experimental data, which is a good validation of the shell models. By investigating the impact of material selection, location, and geometric parameters, FEA can be used in design, reducing trial-and-error iterations in experiments.


Sign in / Sign up

Export Citation Format

Share Document